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Abstract—Smart contract, a special software code running on
and resided in the blockchain, enlarges the general application of
blockchain and exchanges assets without dependence of external
parties. With blockchain’s characteristic of immutability, they
cannot be modified once deployed. Thus, the contract and the
records are persisted on the blockchain forever, including failed
transactions that are caused by runtime errors and result in the
waste of computation, storage, and fees. In this paper, we refer
to smart contracts which will cause runtime errors as crash-
inducing smart contracts. However, automatic identification of
crash-inducing smart contracts is limited investigated in the
literature. The existing approaches to identify crash-inducing
smart contracts are either limited in finding vulnerability (e.g.,
pattern-based static analysis) or very expensive (e.g., program
analysis), which is insufficient for Ethereum.

To reduce runtime errors on Ethereum, we propose an effi-
cient, generalizable, and machine learning-based crash-inducing
smart contract detector, CRASHSCDET, to automatically identify
crash-inducing smart contracts. To investigate the effectiveness
of CRASHSCDET, we firstly propose 34 static source code
metrics from four dimensions (i.e., complexity metrics, count
metrics, object-oriented metrics, and Solidity-specific metrics) to
characterize smart contracts. Then, we collect a large-scale
dataset of verified smart contracts (i.e., 54,739) and label these
smart contracts based on their execution traces on Etherscan.
We make a comprehensive comparison with three state-of-the-
art approaches and the results show that CRASHSCDET can
achieve good performance (i.e., 0.937 of F1-measure and 0.980
of AUC on average) and statistically significantly improve the
baselines by 0.5%-60.4% in terms of F1-measure and by 41.2%-
44.3% in terms of AUC, which indicates the effectiveness of
static source code metrics in identifying crash-inducing smart
contracts. We further investigate the importance of different
types of metrics and find that metrics in different dimensions have
varying abilities to depict the characteristic of smart contracts.
Especially, metrics belonging to the “Count” dimension are the
most discriminative ones but combining all metrics can achieve
better prediction performance.

Index Terms—Crash-inducing Smart Contract, Static Source
Code Metric, Quality Assurance, Ethereum, Machine Learning

∗Chao Ni is the corresponding author.

I. INTRODUCTION

A smart contract is a program running on the blockchain [1],

and its correct execution is enforced by the consensus protocol.

The smart contract is identified by an address (a 160-bit

identifier) and its code is persisted on the blockchain. The

most attractive property of the smart contract is that it can

eliminate the need of a trusted third party in multi-party

interactions, enabling all parties to participate in secure peer-

to-peer transactions.

Although smart contracts have been widely deployed on

the Ethereum platform [2], not all contract transactions are

executed successfully. Many transactions are reverted by the

EVM due to runtime errors [3]. These failed transactions

will not change global state and are a waste of computation.

In addition, considering the immutability of the blockchain,

all processed transactions including failed ones, are stored

permanently in the blocks and waste storage. That is, failed

transactions caused by runtime errors on Ethereum may have

some side-effects: � causing the consumption of storage
and the waste of fees; � affecting the execution efficiency of
Ethereum [3]. In this paper, we refer to smart contracts which

will cause runtime errors as crash-inducing smart contracts.

Identifying issues in smart contracts in advance can avoid

failure-inducing transactions submitted to Ethereum and can

help improve the efficiency of Ethereum.

There are a few feasible methods to test whether a smart

contract is crash-inducing or not, such as fuzzing technol-

ogy [4, 5] and tools based on static analysis [6–8]. However,

these existing methods have some limitations. � As for

fuzzing technology, it generates a large number of test cases

to detect crash-inducing smart contracts. However, generating

enough test cases to identify crash-inducing smart contracts

is time-consuming and high-quality predefined rules for gen-

erating testing cases are also needed. As for tools based

on static analysis [6–8], there exist two major kinds: static

analysis on patterns and static analysis on a specific version

of Ethereum. � For the former one, tools can only identify
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those crash-inducing smart contracts with existing patterns.

For uncovered patterns, these tools can do nothing. � For

the latter one, these static analysis tools are based on a

specific version of Ethereum. However, Ethereum often adds

or changes some instructions [9] through a hard fork, which

will make the existing tools invalid. The existing approaches

to identify crash-inducing smart contracts are either limited

in finding vulnerability (e.g., pattern-based static analysis)

or very expensive (e.g., program analysis) [10], which is

insufficient for Ethereum. Besides, detecting crash-inducing

smart contracts is not trivial, and an effective and generalizable

method to identify crash-inducing smart contracts is urgently

needed. Identifying crash-inducing smart contracts in advance

can help to avoid the loss of gas, decrease the number of

invalid transactions, and improve the efficiency of Ethereum.
In the scenario of software quality assurance (SQA) [11–

14], static source code metrics (e.g., Halstead metrics [15],

McCabe metrics [16]) are treated as important roles and many

researchers have investigated the relationship between static

source code metrics and the software quality (e.g., software

crash). Many approaches are proposed based on the static

source code metrics and prior work confirms these metrics

are useful for quality assurance [17]. Thus, we think the smart

contracts can also benefit from static source code metrics and

we can identify crash-inducing smart contracts in advance with

static source code metrics.
In this paper, to reduce runtime errors on Ethereum, we

propose an efficient, generalizable, and machine learning based

crash-inducing smart contract detector, CRASHSCDET, to

automatically identify crash-inducing smart contracts. To in-

vestigate CRASHSCDET’s effectiveness, we firstly, inspired by

previous work [14–16] in software quality assurance, propose

34 static source code metrics from four dimensions (i.e.,

complexity metrics, count metrics, object-oriented metrics, and

Solidity-specific metrics) to measure a smart contract. We

adopt widely used metrics in SQA, which are general ones.

Besides, we also propose some specific metrics for smart

contracts since we think the characteristic (e.g., gas-driven) of

the smart contract is also a good indicator of quality. Then, we

totally collect 54,739 smart contracts on Etherscan and label

them according to their execution traces of transaction. The re-

sults show that CRASHSCDET can achieve good performance

(i.e., 0.937 of F1-measure and 0.980 of AUC on average) and

statistically significantly improve the baselines by 0.5%-60.4%

in terms of F1-measure and by 41.2%-44.3% in terms of AUC,

which indicates the effectiveness of static source code metrics

in identifying crash-inducing smart contracts. Finally, we make

an analysis of the studied smart contracts and further analyze

the importance of metrics from different dimensions. We find

that metrics in different dimensions have varying abilities to

depict the characteristic of smart contracts and “count metric”

is the most important one. Eventually, our work makes the

following contribution.

� We propose the problem of automatic identification of

crash-inducing smart contracts, and propose 34 static source

code metrics from four dimensions to characterize a smart

contract. To the best of our knowledge, this paper is the first

to detect crash-inducing smart contracts.

� We collect a large-scale dataset (i.e., 54,739 verified con-

tracts with source codes) and label these contracts by

crawling the transaction running traces of smart contracts

since there is no dataset available today.

� We confirm the usefulness of static source code metrics in

identifying crash-inducing smart contracts and also propose

an efficient and generalizable crash-inducing smart contract

detector named CRASHSCDET. The replication package of

dataset and code is publicly available [18].

� We investigate the importance of different types of metrics,

and we find that metrics in different dimensions have vary-

ing abilities to depict the characteristic of smart contracts.

We find that the metrics in the “Count” dimension are the

most discriminative dimension but combining all the metrics

from all dimensions can achieve better performance.

Paper Organization. Section II introduces the background

of Ethereum, EVM, smart contract and error types in EVM.

Section III illustrates the framework of our approach. Sec-

tion IV describes the experimental settings, including the

dataset, the definition of proposed metrics, the baselines, the

performance measures and the validation setting. Section V

presents the research question and analyzes the experimental

results. Section VI lists the potential threats to validity. Sec-

tion VII briefly reviews the related work and Section VIII

concludes this paper.

II. BACKGROUND

A. Ethereum

Bitcoin is the first blockchain-based cryptocurrency system

and was introduced in 2008, which brings enormous potential

of blockchain to the world. The major limitation of Bitcoin

is that it only allows users to encode non-Turing-complete

scripts to execute transactions and consequently reduces its

ability. Then, Ethereum was invented by Vitalik et al. in 2015

to address this limitation. Vitality et al. also brought a new

technology named smart contracts to the world. Nowadays,

Ethereum has become the second most popular blockchain

system, and meanwhile, it is the most popular platform on

which smart contracts can run [19].

B. Ethereum Virtual Machine (EVM)

EVM is a quasi-Turing complete machine that executes

smart contracts and performs error handling to avoid machine

failures. It is implemented as a virtual stack machine with a

pre-defined instruction set (i.e., opcode [20]). When a user

transaction triggers a smart contract, the EVM uses the input

provided by the user and the smart contract state to execute

the contract using gas as fuel. Gas is used as the upper limit of

the EVM execution workload to prevent the endless execution

of the contract.

C. Smart Contract

Ethereum smart contracts can be written in high-level pro-

gramming languages and be compiled into EVM bytecode.
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Solidity is the most popular one and can be used to develop

smart contracts on Ethereum. When a smart contract is created,

its bytecode is stored in the contract account to facilitate trans-

actions. Smart contracts cannot be modified once deployed

since the immutability of blockchain, but they can be deleted

using a self-destruct opcode. To identify a contract address,

a unique 40 bytes hexadecimal hash value is needed. Since

Ethereum is a permission-less network, everyone can send a

transaction with both the contract name and corresponding

input to a specific contract address to call the contract.

D. Error Type

The EVM has defined six runtime error types [21]:

• Out of Gas. Out of gas error is caused by insufficient gas

when you don’t provide enough gas to execute a transaction,

or provided gas is not enough to complete a transaction.

• Revert. Transaction revert occurs when a smart contract

wants to do something that is undefined or unauthorized

in the logic of smart contract in a transaction. Thus, such a

transaction will be reverted and EVM returns an error.

• Invalid Opcode. Invalid opcode error occurs when a smart

contract tries to call a code that doesn’t exist.

• Invalid Jump. Invalid jump occurs when a smart contract

tries to call a nonexistent function or when a smart contract

uses assembly language and points to wrong memory.

• Stack Overflow. Stack overflow error occurs when a smart

contract calls a function recursively with no stop condition.

In Solidity, the stack has at most 1,024 frames, which means

a function can call itself at most 1,024 times. Therefore,

stack overflow will occur if a function is called more than

1,024 times.

• Stack Underflow. Stack underflow error occurs in assembly

language if a smart contract tries to pop a variable that does

not exist.

Notice that, after analyzing the transaction log information

on Ethereum, we find that both stack overflow and stack

underflow are grouped into the type of “Out of Stack”. Invalid

opcode also has the name of “Bad Instruction”, and “Invalid

Jump” also the name of “Bad Jump Destination”. We use these

names interchangeably in this paper.

III. APPROACH

To automatically identify crash-inducing smart contracts, we

propose CRASHSCDET with two phases: � detector building

phase and � detector application phase. The framework of

CRASHSCDET is illustrated in Fig. 1.

A. Detector building phase

In the detector building phase, CRASHSCDET firstly col-

lects all transactions of each verified smart contract deployed

on Ethereum and labels the smart contracts with their status of

transactions. The details can be found in Section IV-B. Then,

we design a set of metrics to characterize the smart contract.

In particular, we totally design 34 static source code metrics

which can be grouped into four categories: Complexity Metric,

Count Metric, Object Oriented Metric and Solidity-specific

Metric. Details can be referred to in Section IV-A. After that,

CRASHSCDET converts source codes of smart contracts into

tabular data, and then builds a detector after pre-processing

(e.g., re-sampling) on training data. By default, we adopt

Random Forest (RF) as the basic classifier with pre-defined

parameters and we use the implementation in scikit-learn [22].

Random Forest [23], an ensemble approach, is specifically

designed for decision tree classifier. It fits many random

decision trees (e.g., C4.5) on various sub-samples of the

dataset and combines multiple decision trees for classification.

Random Forest has the following advantages: 1) it usually has

high precision, and the importance of metrics can be generated

automatically; 2) it can mitigate the over-fitting problem and is

insensitive to outliers since it combines many simple decision

trees that are learned differently.

Smart Contract Metric Extraction and Labeling

Predict

Success / Crashed

Smart 
Contracts

Transactions

FilterF

Smart contracts Metrics Label

Crashed Smart
Contract Detector

Measure

Fig. 1: The framework of CRASHSCDET

B. Detector application phase

In the defector application phase, CRASHSCDET firstly

converts the source code of a smart contract into pre-defined

metrics. Then, the converted data (i.e., vector-like data) is

fed into CRASHSCDET, which will output the corresponding

status of the smart contract. That is, whether the smart contract

will crash during the process of a transaction.

IV. STUDY SETUP

This section firstly introduces the definition of metrics for

characterizing smart contracts. Then, it presents how to collect

and label smart contracts. Following that, the experimental

setting is presented, including the introduction of baselines,

the validation settings, the performance measures and the

statistical analysis.

A. Defining Metrics For Smart Contract

As static source code metrics (e.g., Halstead metrics [15],

McCabe metrics [16], Chidamber & Kemerer [24]) for other

object-oriented programming languages play a very important

role in various SQA activities (e.g., software quality, main-

tainability) and prior work [14, 25, 26] have indicated the

advantages of these metrics, we expect that the same would

be true for smart contracts. Meanwhile, Solidity widely used

to develop smart contracts is also an object-oriented high-

level programming language. We consider all these important

metrics used in previous work to represent a smart contract.

Inspired by existing work [14–16], we totally define 34

static source code metrics, of which 22 metrics are program-

ming language-independent ones and 12 metrics are Solidify-

specific ones. Following existing work [27], we further divide
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the programming-independent metrics into three dimensions:

complexity metrics, count metrics and object-oriented metrics.

To represent a contract with several metrics, we implement

our prototype tool on top of py-solc-x [28] and py-solc-
ast [29]. py-solc-x is a python wrapper and version manage-

ment tool for the solc (i.e., the Solidity compiler), while py-sol-
ast is a tool for exploring the solc abstract syntax tree (AST).

We calculate the metrics of contract either on the Solidity

source codes directly or by implementing visitors to collect

the necessary information from the built AST. We introduce

these metrics as follows.

� Complexity Metrics are used to measure the number of

paths through a program, which indicates the code complex-

ity [16]. Intuitively, the more complex a piece of code is, the

higher probability of it being a defective code. Complexity

dimension has six metrics: AvgCyclomatic, MaxCyclomatic,

SumCyclomatic, MaxInheritanceTree, MaxNesting and Count-
ContractCoupled. The introductions to them are as below.

AvgCyclomatic & MaxCyclomatic & SumCyclomatic.

McCabe’s cyclomatic complexity [16] represents the sum of

the number of branching statements and 1. A function in

a smart contract is represented as a function node in AST.

We calculate the sum of the number of branching statements

from two aspects: 1) traversing and counting all the branch

statements (e.g., if, while, do while, and for) in the subtree

of AST under the appropriate function node; 2) calculating

the total number of “&&”, “||”, and “? : ” in source code

file. Suppose there are n functions in a Solidity file, we

have n numbers of McCabe’s cyclomatic complexity for all

functions (i.e., M1,M2, ...,Mn). Thus, MaxCyclomatic value

for a Solidity file is the max value of McCabe’s cyclo-

matic complexity among all functions in a Solidity file (i.e.,

max(M1,M2, ...,Mn)). SumCyclomatic value for a Solidity

file is the sum value of McCabe’s cyclomatic complexity

among all functions in a Solidity file (i.e., sum(M1, M2, ...,

Mn)). AvgCyclomatic value for a Solidity file is the average

value of McCabe’s cyclomatic complexity among all functions

in a Solidity file (i.e., sum(M1, M2, ..., Mn)/n).

MaxInheritanceTree. The maximum depth of a contract

in the inheritance tree metric represents the maximum depth

of inheritance, which indicates how deep the main contract

is in the inheritance tree. In our studied contracts, there

may have a few contracts in a Solidity file, but only one

contract is the main contract and other contracts are the helper

contracts or inherited contracts. A recursive algorithm is used

to calculate this metric. We set a MaxInheritanceTree value

to the main contract that is the maximal MaxInheritanceTree
measure of its parents plus 1. Notice that we always take the

deepest path through the inheritance tree since the Solidity

programming language supports multiple inheritances. The

MaxInheritanceTree values of parent nodes are calculated

recursively until a node has no parents, and the corresponding

MaxInheritanceTree value is 0.

MaxNesting. The nesting level metric indicates the deepest

nesting level of the control structures within the functions

in a Solidity file. To calculate the nesting levels of a single

function, we access all the statements in the subtree rooted by

the function and count the number of branching statements

on the path from the statement to the function definition

traversing the parent nodes. Therefore, the MaxNesting value

of a Solidity file is the maximum value among all nesting level

values calculated for the statements in a function.

CountContractCoupled. The coupling between contracts

metric measures the count of the contracts coupled with a

certain contract. When a function of one contract calls a

function of another contract or accesses a variable of another

contract, we consider the two contracts to be coupled. This

metric is used to reflect how contracts are connected to each

other and it reflects how many other types of contracts are

used (i.e., as state variable type, local variable type, function

parameters, etc.) by a particular contract. We calculate Count-
ContractCoupled of a contract C1 as the size of the collection

of contracts that reference C1 or are referenced by C1.

� Count Metrics are used to represent code characteristic

from the physical size (e.g., functional statements, blank lines,

or code comments), which are good indicators of faults as

confirmed by Gyimothy et al. [30]. Intuitively, the larger

code-size of a code, the more probability of a defective

code. The count metric dimension is also composed of six

metrics: CountLineCode, CountLineCodeExe, CountLineCom-
ment, CountStmt, CountLineBlank and RatioCommentToCode.

The introduction to these metrics are as follows:

CountLineCode. The source lines of code metric denotes

the number of source code lines in a Solidity file. It is

calculated based on the starting and ending line number of

the file after pre-processing.

CountLineCodeExe. The number of executable lines of

code metric counts the non-empty and non-comment lines in

a Solidity source code file. That is, those lines, containing

actual statements, are only counted. To calculate this metric,

we scan the source code line by line and filter out all

the empty and comment lines to get the CountLineCodeExe
metric. In Solidity programming language, there are two types

of methods to comment on the source code: (1) single-line

comments (“//[/]”) and (2) multi-line comments (“/*...*/”).

Therefore, we consider all lines to be comment lines if they

start with “/*”, “*”, “//[/]” or end with “*/”.

CountLineComment. The lines with comments metric is

the number of comment lines in a Solidity source code file.

It is calculated from the Solidity source file with the heuristic

described above at CountLineCodeExe metric.

CountStmt. The number of statements metric is a simple

size metric and it counts how many statements there are in a

Solidity source code file. We calculate this metric by counting

the number of statement definition in parsed AST of a specific

Solidity source code file.

CountLineBlank. The blank lines of code metric is the

number of blank lines in a Solidity source code file. To

calculate this metric, we scan the source code line by line and

search all the empty lines to get the CountLineBlank metric.

RatioCommentToCode. The ratio of comment lines to

code lines metric in a solidity source code file is defined as
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the ratio of CountLineComment and CountLineCode.

� Object-oriented Metrics are used to characterize the

quality of source code from a high-level view. The object-

oriented approach centers around modeling the real world

in terms of its objects, which is in contrast to the tradi-

tional approaches that emphasize a function-oriented view

that separates data and procedures [24]. Prior work [31] has

confirmed the relationship between object-oriented metrics

and the code quality. The object-oriented metric dimension

includes ten metrics: CountContractBase, CountDependence,

CountContract, CountTotalFunction, CountFunctionExternal,
CountFunctionPublic,CountFunctionInternal, CountFunction-
Private, CountPublicVariable and CountVariable. The intro-

duction to these metrics are as follows:

CountContractBase. The base contract metric indicates

the number of direct base contracts of the main contract.

We calculate this metric from the parsed AST of a specific

Solidity source code file by counting the directly inherited

basic contracts with the help of py-solc-ast.
CountDependence. The number of dependence metric indi-

cates the number of direct dependence or indirect dependence

of the main contract in a Solidity source code file. In Solidity

programming language, a contract can inherit from multi

contracts, and the inherited contracts may also inherit from

other contracts. We calculate all the number of immediate base

contracts and the indirect inherited contracts.

CountContract. This metric measures the number of con-

tracts in a Solidity source code file. In a Solidity source code

file, there may have a few contract definitions, in which, only

one contract is treated as the main contract, the others are

treated as non-main contracts.

CountFunctionInternal & CountFunctionExternal &

CountFunctionPrivate & CountFunctionPublic &

CountTotalFunction. In Solidity, there are four types of

visibility for functions and state variables: external, public,

internal, or private. Functions defined in Solidity have to be

specified as one of the four types. However, for state variables,

external is not possible. The external function is part of the

contract interface, which means they can only be called from

other contracts and via transactions. The public function is also

part of the contract interface and can be either called internally

or via messages. For public state variables, an automatic getter

function is generated in a contract. For internal function and

state variables, they can only be accessed internally (i.e.,

within the current contract or contracts deriving from it). For

private function and state variables, they are only visible for

the contract they are defined in and not in derived contracts.

To calculate these metrics in a Solidity source code file, we

sum up the corresponding number of definitions of functions

which are external, public, internal, or private respectively

based on function nodes in the AST. We also sum up the total

number of functions in a Solidity source code file as the value

of CountTotalFunction.

CountPublicVariable & CountVariable. We calculate the

number of variables in a Solidity source code file as the value

of CountVariable and calculate the number of public variables

in a Solidity file as the value of CountPublicVariable.

� Solidity-specific Metrics. Different programming lan-

guages have different characteristics and consequently have

different impacts on the quality of code [32–34]. These

aforementioned metrics are general metrics. However, Solidity

is a contract-oriented, high-level language for implementing

smart contracts. It is designed to target the EVM, which

is quite sensitive to the resource (e.g., gas). Almost all of

the operations (e.g., transferring, storing) in a smart contract

are driven by sufficient gas. The gas refers to the unit that

measures the amount of computational effort required to

execute specific operations on the Ethereum network. The gas

is valuable and can be converted into real-world currency.

Therefore, considering the characteristic of smart contract, we

propose some heuristic metrics which are specific to Solidify

programming language.

Firstly, since the gas-driven characteristic of Ethereum, all

instructions in the smart contract need to consume gas, for

example, transferring operation, storing corresponding data,

calling other smart contracts, recording the running logs,

and so on. Different instructions cost varying numbers of

gas. Therefore, the more number of instructions in a smart

contract, the more gas will be consumed. This increases the

probability of a smart contract crash due to the exhaustion of

gas. Thus, we define the eight metrics (e.g., NOSV, NOMap,

NOPay, NOE, NOMod, NOT, NOC and NODC) to identify

this characteristic.

Secondly, since the immutability characteristic of Ethereum,

we cannot modify any code in a smart contract deployed on

Ethereum even it contains bugs or servers as a library for other

smart contracts. Besides, for a specific smart contract, we can-

not make any modifications to what is implicitly or explicitly

claimed to be unchangeable. As for this characteristic, it will

increase the risky of crash. Therefore, we define two metrics

(e.g., NOSF and NOL) to identify this characteristic.

Finally, the default action in a smart contract will have a

large influence on its behavior. For example, the default “fall-

back” function can only accept calls with data but reject calls

with gas. Therefore, the smart contract must define its own

“fallback” function and mark it with “payable” feature. We

define “SDFB” to identify this characteristic. At the same time,

we think a good design of code struct (e.g., modularization)

will impact the readability of code and consequently impact

the quality of code, therefore we simply define “NOI” metric

to identify its good structure.

In summary, we propose 12 Solidity-related metrics and

introduce them as follows.

NOSV is short for the number of storage variables. The

EVM has three areas where it can store data: storage, memory
and the stack. Each account in Ethereum has a data area

called storage, which is persistent between function calls and

transactions. However, it is comparatively costly to read, and

even more to initialize and change storage. The number of

storage variable metric measures how many variables stored

in the storage area are defined in a Solidity source code

file. Besides, there are three data types (i.e., mapping, array,

112

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:53:15 UTC from IEEE Xplore.  Restrictions apply. 



struct) are storage variable by default. Different from other

programming languages, all the storage variables in Solidity

will cause the consumption of gas. Therefore, the more storage

variable defined the higher is the probability of a smart

contract to crash. Therefore, we calculate the number of these

typed variables in a Solidity source code file.

NOMap is short for number of mapping variables. Mapping

type is one of the most used data types in Solidity program-

ming language, which is similar to hashtable. However, there

is no inner state variable to record the number of elements in it

and the Mapping type is not supported to visit all elements like

a “foreach loop” operation. Therefore, we think this type of

variable will increase the risk of a smart contract to crash due

to its peculiar usage and it will also cost more gas consumption

for recording the length and key of the Mapping. The number

of mapping variable metric measures how many variables are

defined as the type of mapping in a Solidity source code file.

NOPay is short for number of payable functions. Payable

functions provide a mechanism to receive funds in ethers to

a contract and they are annotated with the payable keyword.

However, a pay operation successfully executes with at least

two basic conditions: sufficient gas from the sender and valid

receiver. Therefore, the smart contract will crash if the two

conditions are not satisfied. The number of payable function

metric measures how many payable functions are defined in a

Solidity source code file.

NOE is short for number of events. Events in Solidity is

the wrapper of EVM’s logging functionality. Applications can

subscribe and listen to these events through the RPC interface

of an Ethereum client to get the corresponding messages.

However, the event also needs gas to drive it. The more usage

of events, the more the consumption of gas is. Therefore,

the number of events metric measures how many events are

defined in a Solidity source code file.

NOMod is short for number of modifiers. Modifiers, a

wrapper of function, can change the behavior of functions

in a declarative way. For example, we can use a modifier to

automatically check an expected condition prior to executing

a specific function. The number of modifiers measures how

many modifiers are defined in a Solidity source code file and

it also consumes gas.

NOT is short for the number of transfer operations. The

transfer function is an attribute of contract address, which

can transfer the ether from one contract to another one. The

transfer function consumes gas in two ways: one is the amount

of gas the sender wants to send to the receiver, and another

is the amount it needs to complete the operation. The NOT
metric measures how many times the transfer function is

invoked in a Solidity source code file.

NOC represents the number of call operations. Contracts

can call other contracts through message calls. Message call

is a low-level call method working on raw addresses in EVM

and it can be used as a function call, ether sending, and so

on. Every time a Solidity contract calls a function of another

contract, it does so by producing a message call, which will

cost a large number of units of gas. The number of message

calls metric measures how many message calls are used in a

Solidity source code file.

NODC is short for number of delegatecall operations. There

exists a special variant of a message call, named delegatecall

which is the same as a message call apart from the fact that

the code at the target address is executed in the context of

the calling contract and message’s sender and message’s value

do not change their values. Similar to message call, it will

also cost a large number of units of gas. The number of

delegatecalls metric measures how many delegatecalls are used

in a Solidity source code file.

NOSF is short for number of static functions. Static func-

tions are expected not to modify the state of Ethereum. Two

types of functions are declared not to modify the state: pure
and view. Any instructions in static function try to change the

state of Ethereum will cause a smart contract crash. Therefore,

we calculate the number of static function metric by counting

the number of pure or view functions in the source code file.

SDFB represents whether a smart contract uses self-define

Fallback function. A contract can have one fallback function

at most. The fallback function is executed on a call to the

contract if none of the other functions match the given function

signature, or if no data is supplied at all and there is no receive

Ether function. The fallback function always receives data but

rejects gas by default. To receive the gas, it must be marked as

“payable”. The self-define fallback function metric measures

whether a contract defines a fallback function by itself.

NOL is short for number of libraries. Libraries are also

similar to contracts, but their purpose is that they are deployed

only once at a specific address and their code can be reused.

Functions in a library can only be called directly if they do

not modify the state since libraries are assumed to be stateless.

However, the quality of the library is not under control and

the code of the library cannot be modified, the smart contracts

will have potential risk in the quality if there exists risky code

in those used libraries. The number of library metric measures

how many libraries are used in a Solidity source code file.

NOI is short for number of interfaces. Interfaces are similar

to abstract contracts, which decouple the definition of a

contract from its implementation, providing better extensibil-

ity and self-documentation and facilitating patterns like the

template method and removing code duplication. However, in-

terfaces cannot have any functions implemented. We believe a

good design of code structure will improve the code readability

and consequently improve the code quality. We simply think

the usage of the interface will modularize the smart contract

and consequently improve the quality of smart contract. The

number of interface metric measures how many interfaces are

defined in a Solidity source code file.

B. Collecting and Labeling Smart Contract

Smart contract collection. We totally collect 54,739 smart

contracts with source code written in Solidity programming

language [35] from Etherscan [36]. The source codes of these

contracts are submitted to Etherscan by their owners and

are verified by Etherscan. We do not search on GitHub for
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smart contracts since we only want to collect those contracts

deployed on the Ethereum network. The deployed contracts

have meaningful transactions and some of those deployed

contracts have verified source codes, which indicates that the

functionality of the Solidity source code and the deployed

EVM bytecode is manually compared and validated. We crawl

and download these validated source codes of deployed smart

contracts monitored by the Etherscan. Thus, we can make sure

that the source codes we analyzed are actually the same as

the contract being deployed on the Ethereum network. For

further research on crash-inducing smart contracts, we set up

the following exclusion criteria:

• Remove contracts that have no transactions. No transac-

tions, no information for analyzing the execution quality of

contracts (622 contracts).

• Remove self-destruct contracts. Self-destructed contracts

can no longer run on Ethereum, so they cannot provide

useful running information for future research.

• Compilation error. We cannot extract AST-based code

metrics for smart contracts with compliation errors (e.g.,

“0xe9e2e188cdc5fcbc8fd2cdf553a98b43514241b4”).

• Low Solidity version. Contracts that can only be complied

with “<= 0.4.11” Solidity version should be removed since

they are not compatible with the new compiler and will

gradually be abandoned.

After filtering by these criteria, 3,745 contracts are discarded

and we finally obtain 50,994 contracts for this study.

TABLE I: Statistics of the analyzed smart contracts.
Sol Files Contract Library Interface Event Modifier LOC

Total 225,918 32,165 10,927 219,657 99,395 17,776,799

Avg./sol

File

4.43 0.63 0.21 4.31 1.95 348.61

Submitted for

verification at

Etherscan.io

Smart contract labeling. Labeling contracts as crash-inducing

ones or not is extremely important. As Ethereum records

all transactions and execution status of smart contracts, we

use API provided by Etherscan for extracting the execution

traces of each transaction. A contract may have hundreds

or thousands of transactions and each transaction can be

treated as the test-case for a contract. A contract is labeled

as a crash-inducing one if there exists one transaction of

all transactions related to such a contract being executed

incorrectly. A contract is labeled as a non-crash-inducing one

if and only if all transactions related to such a contract are

executed correctly.

The statistical information of the dataset is shown in Table I,

including the statistics of smart contracts, libraries, interfaces,

events, modifiers and LOCs. We totally analyze 225,918 sub-

contracts (including main contract and its depended contracts),

32,165 libraries, 10,927 interfaces, 219,657 events, 99,395

modifiers and 17,776,799 LOCs. The second row shows the

average statistical information of each Solidity file.

Table II shows the statistics from the side of the manually

defined metrics for all the studied smart contracts. We can also

TABLE II: Statistics of the calculated metric values.
Dim. Metric Mean Std. Min Q1 Q2 Q3 Max

C
om

pl
ex

ity

AvgCyclomatic 1.34 0.66 0 1.05 1.15 1.47 63.20

MaxCyclomatic 3.64 5.96 0 2 2 4 611

MaxInheritanceTree 1.47 1.32 0 0 1 2 10

MaxNesting 1.45 1.82 0 1 1 2 125

SumCyclomatic 29.72 33.53 0 12 18 33 632

CountContractCoupled 0.53 0.88 0 0 0 1 17

C
ou

nt

CountLineCode 348.61 434.73 2 132 223 394 11,706

CountLineCodeExe 198.07 240.90 2 77 118 224 5,196

CountLineComment 97.11 183.53 0 17 56 112 9,347

CountStmt 78.06 90.96 0 29 47 88 1,424

CountLineBlank 59.09 76.56 0 20 37 67 3,711

RatioCommentToCode 0.24 0.15 0 0.12 0.26 0.35 0.95

O
bj

ec
t-

O
ri

en
te

d

CountContractBase 4.43 3.79 0 2 3 5 80

CountDependence 3.01 2.98 0 1 2 4 32

CountContract 4.43 3.79 0 2 3 5 80

CountTotalFunction 26.71 26.42 0 13 20 30 835

CountPublicVariable 9.15 8.72 0 5 7 10 208

CountVariable 12.64 11.32 0 7 9 14 212

CountFunctionPrivate 0.59 2.37 0 0 0 0 64

CountFunctionInternal 5.09 11.34 0 0 4 5 629

CountFunctionExternal 1.86 7.04 0 0 0 1 280

CountFunctionPublic 19.16 16.66 0 9 15 24 308

So
lid

ity
-s

pe
ci

fic

NOI 0.21 0.69 0 0 0 0 16

NOL 0.63 0.92 0 0 1 1 27

NOSV 16.31 21.11 0 7 10 17 1,367

NOMap 3.40 3.10 0 3 3 4 89

NOPay 1.12 1.87 0 0 1 1 33

NOE 4.31 4.23 0 2 3 6 76

NOMod 1.95 2.56 0 0 1 3 49

NOT 1.30 2.03 0 0 1 2 56

NOC 0.10 0.40 0 0 0 0 13

NODC 0.00 0.12 0 0 0 0 16

NOSF 9.51 11.50 0 4 8 11 395

SDFB 0.51 0.50 0 0 1 1 1

∗:Dim. refers to dimension; Q2 refers to median.

draw a few general conclusions including but not limited to

the following ones: (1) the complexity of smart contracts is

low since AvgCyclomatic equals to 1.34, MaxNesting equals

to 1.45 as well as CountContractCoupled equals to 0.53. (2)

smart contracts are relatively easy to read given their size

(i.e., CountLineCodeExe is 198) and detailed comments (i.e.,

RatioCommentToCode is 0.24). (3) smart contracts will cause

more storage space in Ethereum (NOSV is 16.31). (4) half

of smart contracts may support the transferring of Ether since

average and median value of NOPay is 1.1 and 1, respectively.

Non-Crash-inducingNon-Crash-inducing

Crash-inducingCrash-inducing

Bad Jump DestinationBad Jump Destination

Bad InstructionBad Instruction

RevertedReverted

Out of Gas Out of Gas Out of StackOut of Stack

Fig. 2: The distribution of Smart Contract

Fig. 2 shows the distribution of crash-inducing smart con-

tracts and non-crash-inducing smart contracts. We find that al-

most 63.1% of all smart contracts are non-crash-inducing ones

(i.e., 34,539), while 36.9% of contracts are crash-inducing

ones (i.e., 20,200). Among all crash-inducing smart contracts,

we analyze the ratios of different types of runtime error in their

transactions: 53.05% of “Reverted” (i.e., 1,177,412), 33.84%

of “Out of Gas” (i.e., 750,944), 10.79% of “Bad Instruction”

(i.e., 239,426), 2.32% of “Bad Jump Destination” (i.e., 51,525)

and almost none of “Out of Stack” (i.e., 57).
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C. Experimental Setting
1) Baselines: We consider three state-of-the-art machine

learning based methods (i.e., SMARTEMBED [37], Safe [38]

and ContractWard [39]) and briefly introduce them as follows.

� SMARTEMBED. Gao et al. [37] proposed SMARTEMBED
to detect bugs in smart contracts by code clone detection

technology. More precisely, they build two datasets: the source

code database containing all the verified smart contracts in the

Etherscan and the bug database containing the bugs of each

smart contract in its source code database. For a given smart

contract, SMARTEMBED converts it into embedding matrices

after some pre-processing operations, which is further used to

conduct both clone-detection tasks and bug-detection tasks.

� Safe. Tann et al. [38] proposed an approach of sequential

learning for defecting smart contract security threats. They

adopt LSTM [40] to build the sequential security threats de-

fection model with the input of operation codes (i.e., opcode)

of smart contracts and their corresponding labels.

� ContractWard. Wang et al. [39] proposed a novel machine

learning-based approach, ContractWard, to automatically de-

tect vulnerabilities in smart contracts. ContractWard firstly

convert source codes of smart contracts into operation codes

(opcodes) and subsequently simplify the opcodes according to

their designed rules. Then, ContractWard extracts thousands of

dimensional bigram features from simplified contract opcodes

to characteristic smart contracts and it is finally trained on a

balanced dataset for vulnerability detection.

2) Performance Measures: We adopt two widely used per-

formance metrics to evaluate CRASHSCDET’s effectiveness.

F1 -measure. There exist four possible prediction results for

a smart contract when an approach classifies a smart contract

as a crash-inducing one or not: True Positive(TP), False

Positive(FP), False Negative(FN), and True Negative(TN).

Therefore, based on above four possible results, F1-measure

can be defined as follows: F1 -measure = 2×Precision×Recall
Precision+Recall ,

where Precision = TP
TP+FP and Recall = TP

TR+FN .

AUC. AUC [27, 41] represents the area under the receiver

operating characteristic (ROC) curve [42], which is a 2D

illustration of true positive rate (TPR) on the y-axis versus

false positive rate (FPR) on the x-axis. ROC curve is obtained

by varying the classification threshold over all possible values,

separating clean and defect-prone predictions.

3) Validation Setting and Statistical Analysis: We consider

the widely used 10-fold cross-validation setting and report the

average of the 100 values. Besides, to check the statistical

significance of the performance difference between the two

different methods, we adopt the Wilcoxon signed-rank test [43]

with a Bonferroni correction [44] at 95 percent significance

level. Meanwhile, Cliff’s delta (δ) [45] is used to quantify the

amount of difference between the two approaches.

V. EMPIRICAL STUDY RESULTS

A. [RQ-1]: Can CRASHSCDET effectively identify crash-
inducing smart contracts in advance?
Motivation. Smart contracts cannot be patched after deployed

to the blockchain due to the immutability of the blockchain.

Besides, smart contracts might contain a few specific defects

compared to traditional programs (e.g., Android Apps) because

of their unique and revolutionary features as compared to

traditional software (e.g., the gas system, the decentralized

characteristic). The transactions in history can be used to

check the robustness, security, and high reliability of smart

contracts, and all transactions of the smart contract are treated

as test cases. However, the crash-inducing smart contracts (i.e.,

failed transactions of a smart contract) not only result in the

consumption of funds (e.g., gas) but also affect the running

efficiency of the Ethereum [3]. Therefore, detecting crash-

inducing smart contracts in advance is a good way to ensure

contacts’ robustness.

Method. We first define 34 metrics to represent a smart

contract, then we crawl all transactions of studied smart

contracts to label whether they are executed successfully or

not. Specially, we propose a machine learning-based method,

CRASHSCDET, and implement it on top of the scikit-learn. By

default, we build CRASHSCDET by using a Random Forest

classifier and make a comparison with three state-of-the-arts

(i.e., SMARTEMBED [37], Safe [38] and ContractWard [39]).

Besides, we apply random oversampling on dataset to address

imbalance issues with the help of imblearn package [46].

Additionally, Chen et al. [47] conducted a study and found

that about 81% of accounts (96% of smart contracts and 77%

of external owned account) have less than 5 transactions on

Ethereum. That is, most accounts (especially smart contracts)

are infrequent in transferring money. Besides, almost all smart

contracts have no more than 30 transactions. Therefore, to

remove low-quality contracts, we filter out two smaller datasets

with two different numbers of transactions:5 and 30. Mean-

while, we remove duplicated contracts if the similarity of their

bytecodes is 100%. Finally, we have a size of 25,276 for 5-

trans dataset and a size of 13,954 for 30-trans dataset.

Results. Table III presents the average F1-measure and

AUC values of four crash-inducing smart contract detectors.

The top half of the table shows the results of 5-Trans. filter,

while the bottom half of it shows the results on 30-Trans.

filter. The statistical results are listed in the bottom few rows

of each part, and the best model is shown in the last row of

each part. According to the results shown in Table III, we find

that the four crash-inducing smart contract detectors also have

varying abilities to identify crash-inducing smart contracts

and CRASHSCDET statistically significantly outperforms all

baselines on both smaller datasets in terms of two performance

measures with a large effect size in most cases.

More precisely, in terms of F1-measure on 5-Trans.,

CRASHSCDET achieves 0.791 on average and improves

Safe(i.e., 0.644) by 22.8%. CRASHSCDET also performs sim-

ilarly with both ContractWard (i.e, 0.789) and SMARTEMBED
(i.e., 0.790). In terms of AUC on 5-Trans., CRASHSCDET ob-

tains 0.870 on average and statistically significantly improves

baselines by 33.0%-36.2% with a large effect size.

In terms of F1-measure on 30-Trans., CRASHSCDET per-

forms similarly with SMARTEMBED and ContractWard on

average, but markedly improves Safe by 60.4%. In terms of
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TABLE III: The comparison results among three baselines

and CRASHSCDET

Classifer F1-measure AUC

CSCD SE Safe CW CSCD SE Safe CW

5-
Tr

an
s.

Avg. 0.791 0.789 0.644 0.790 0.870 0.650 0.654 0.639

Improv. 0.3% 22.8% 0.1% 33.8% 33.0% 36.2%

p-value <0.001 <0.001 <0.05 <0.001 <0.001 <0.001

Delta Small Large Negligible Large Large Large

Winner CRASHSCDET CRASHSCDET

30
-T

ra
ns

. Avg. 0.937 0.929 0.584 0.932 0.980 0.679 0.694 0.682

Improv. 0.9% 60.4% 0.5% 44.3% 41.2% 43.7%

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Delta Large Large Large Large Large Large

Winner CRASHSCDET CRASHSCDET

∗ CSCD for CRASHSCDET, SE for SMARTEMBED, CW for ContractWard, Delta for Cliff’s Delta

AUC on 30-Trans., CRASHSCDET obtains 0.980 on average

and statistically significantly improves baselines by 41.2%-

44.3% with a large effect size.

	 RQ-1 Our proposed metrics can effectively capture the
characteristics of the crash-inducing smart contracts and
CRASHSCDET can effectively identify the crash-inducing
smart contracts and perform best among state-of-the-art
approaches: SMARTEMBED, Safe and ContractWard.

B. [RQ-2]: How do different basic classifiers affect crash-
inducing smart contract detector?
Motivation. In this paper, we propose a few metrics to

characterize the smart contracts and build a crash-inducing

smart contract detector with a basic classifier. In fact, different

classifiers have different characteristics, which may have a

varying affect on effectiveness of CRASHSCDET.

Method. In order to indicate the influence of different basic

classifiers on the effectiveness of CRASHSCDET, we totally

consider three classical and widely used basic classifiers

(i.e., Random Forest(RF), Naive Bayes(NB), and Logistic

Regression(LR)) in the scenario of software quality assur-

ance [11, 13, 14, 17, 41, 48].

We build three CRASHSCDETs with different basic clas-

sifiers (i.e., RF, NB, and LR) on the top of scikit-learn

toolkit with default parameters and re-conduct experiments

on all original datasets. Meanwhile, we also apply random

oversampling technology with the help of imblearn package

to address the issues of data imbalance.

TABLE IV: The performance comparison among three

CRASHSCDETs built with three different basic classifiers

Performance F1-measure AUC

RF NB LR RF NB LR

Average 0.75 0.40 0.59 0.83 0.64 0.67

Improvement 87.5% 27.1% 29.7% 23.9%

p-value <0.001 <0.001 <0.001 <0.001

Cliff’s Delta Large Large Large Large

Winner CRASHSCDET (RF ) CRASHSCDET (RF )

Results. Table IV presents the average F1-measure and

AUC values of the three crash-inducing smart contract de-

tectors. The statistical results are shown in the bottom few

rows of this table, and the best model is listed in the last

row. According to the results shown in Table IV, we find that

the three crash-inducing smart contract detectors have varying

abilities to identify crash-inducing smart contracts. In particu-

lar, CRASHSCDET (RF ) statistically significantly outperforms

CRASHSCDET (NB) and CRASHSCDET (LR) with a large

effect size. On average, CRASHSCDET (RF ) achieves 0.75 of

F1-measure and 0.83 of AUC, which improves CRASHSCDET

(NB) and CRASHSCDET (LR) by 87.5% and 27.1% in terms

of F1-measure, and by 29.7% and 23.9% in terms of AUC.

	 RQ-2 Different basic classifiers (i.e., RF, NB and LR)
have a varying affect on the effectiveness of CRASHSCDET

and CRASHSCDET built with RF can achieve the best per-
formance on identifying the crash-inducing smart contracts.

C. [RQ-3]: How do metrics in different dimensions affect
crash-inducing smart contract detector?
Motivation. In addition to identifying crash-inducing smart

contracts with high accuracy, we also are interested in in-

vestigating which types of metrics are the best contributors

to the best detector. By default, our approach CRASHSCDET

combines the four dimensions of metrics: complexity, count,

object-oriented, and Solidity-specific. These metrics character-

ize smart contracts from different aspects. Some aspects may

be more discriminative for identifying crash-inducing smart

contracts. Therefore, we want to figure out the importance of

different dimensions of metrics.

Method. We build CRASHSCDET by learning on met-

rics in each dimension. For the convenience of expression,

we refer to them as the dimension name (i.e., “Complex-

ity”, “Count”, “Object-oriented”, and “Solidity-specific”). The

CRASHSCDET built with all metrics is referred to as “All”.

In each model, we keep the basic classifier (i.e., Random

Forest with default settings) as the same. We compare their

performance obtained by 10 times stratified 10-fold cross

validation setting. In order to ensure a fair comparison, in

each cross validation, we keep the training data and testing

data the same for each model.

Moreover, to investigate whether the difference between the

model built on all metrics and the four models built on a single

dimension of metrics is statistically significant, we adopt the

Wilcoxon signed-rank test with a Bonferroni correction at 95

percent significance level and compute the Cliff’s delta to

measure the effect size.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1 AUC
Fig. 3: The impacts of metrics from different dimensions on

the performance of CRASHSCDET

Results. Fig. 3 illustrates the performance of five models in

terms of F1-measure and AUC in the form of the boxplot.

From this figure, we find that all models can achieve a good

performance and “All” performs the best, while “Complexity”

performs the worst. Among the four models built on each
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dimension (i.e., “Complexity”, “Count”, “Object-oriented” and

“Solidity-specific”), “Count” performs the best, while “Object-

oriented” and “Solidity-specific” perform similarly. In particu-

lar, “All” achieves 0.75 of F1-measure and 0.83 of AUC, which

statistically significantly outperform “Complexity” (0.67 of

F1 and 0.74 of AUC), “Count” (0.73 of F1 and 0.81 of

AUC), “Object-oriented” ( 0.70 of F1 and 0.78 of AUC), and

“Solidity-specific” (0.70 of F1 and 0.78 of AUC).

	 RQ-3 Metrics in different dimensions have varying
abilities to depict the characteristic of smart contracts and
“Count” is the most discriminative dimension. Combining
all the metrics can improve the performance of a crash-
inducing smart contract detector.

VI. THREATS TO VALIDITY

Threats to internal validity mainly consist in the validation

of studied smart contracts. We collect the studied smart

contracts on July 31, 2019. However, the Ethereum ecosystem

is fast-evolving and some smart contracts may be destructed.

Besides, we label a smart contract as crashed one or non-

crashed one based on the traces of the transactions on October

10, 2020. As the running of smart contracts, the traces of

transactions of smart contracts may also be changed.

Threats to external validity mainly consist in the generaliz-

ability of our approach. We only consider the verified smart

contracts deployed in Etherscan. Thus, it is still unknown

whether our conclusions are generalizable to those contracts

un-deployed on Ethereum.

Threats to construct validity mainly lie in the adopted

performance metrics. We consider two widely used perfor-

mance measures (e.g., F1-measure and AUC) and check the

approach’s superiority with Wilcoxon signed-rank test.

VII. RELATED WORK

Ethereum, invented by Vitalik et al. [49] at the end of 2015,

introduces a new technology named smart contracts to the

world. It is a blockchain-based cryptocurrency system. Com-

pared with Bitcoin, Ethereum defines a Turing-complete pro-

gramming platform and a run-time environment called EVM

(Ethereum Virtual Machine). EVM can run the bytecodes of

smart contracts. Nowadays, Ethereum has become the most

popular platform on which to run smart contracts and many

work related to smart contracts have been proposed [19, 50].

As smart contracts provide programmers with a new plat-

form, many new tools are proposed to help to perform code

analysis and verification. Tonelli et al. [51] firstly defined

some metrics which are similar to those of the classic Chi-

damber&Kemerer (C&K) [24] metrics in the object-oriented

world. Then, they compared their distributions with the metrics

extracted from more traditional software projects on more

than twelve thousands smart contracts written in Solidity. The

results indicated that, in general, the ranges of smart contracts

metrics are more restricted than the corresponding metrics of

traditional software systems. Following that, Peter [52] further

defined and extracted C&K software metrics and also made a

deep analysis on the distributions of metrics on 40,352 smart

contracts from various dimensions.

Jiang et al. [4] proposed a fuzzing-based tool named Con-
tractFuzzer to detect seven types of security defects. Nguyen

et al. [5] proposed a method named sFuzz to identify more

security defects by covering more branches. Kolluri et al. [53]

proposed a method named EthRacer which can run directly on

Ethereum bytecode. Liu et al. [54] proposed a method named

ReGuard, which can provide a web service for developers

to easily use. Fu et al. [55] proposed a method named

EVMFuzz which designs a differential fuzz testing framework

and supports EVM smart contracts developed by different

programming languages.

Besides, Liu et al. [10] proposed a novel semantic-aware

security auditing technique called S-gram for Ethereum, which

can be used to predict potential vulnerabilities by identifying

irregular token sequences. Chang et al. [56] propose an new

approach, sCompile, to automatically identify critical program

paths in a smart contract, sort paths according to their critical-

ity, discard them if they are not feasible or otherwise provide

them with user-friendly warnings for user inspection. Gao et

al. [37] use clone detection method to propose a tool named

SMARTEMBED to detect bugs in smart contracts.

Prior work either needs to exhaust a large amount of gas or

detects a few specific types of defects. Different from previous

work, in this paper, we mainly focus on identifying crashed

smart contract which has runtime errors. That is, this paper

proposes CRASHSCDET to detect whether the contract will

crash, rather than only focusing on specific defects.

VIII. CONCLUSIONS

In this paper, we mainly focus on whether static source

code metrics can help identify crash-inducing smart contracts

in advance or not. We firstly propose 34 static source code

metrics from four dimensions (i.e., complexity metrics, count
metrics, object-oriented metrics and Solidity-specific metrics)

to characterize a smart contract. Then, we totally collect

54,739 verified smart contracts source codes on Ethereum and

extract these static metrics of each contract. We label these

contracts with their corresponding transactions. Following that,

we propose a crash-inducing smart contract detector named

CRASHSCDET, which can effectively identify whether a smart

contract is a crash-inducing one. We further analyze the

importance of metrics from different dimensions and find that

“count metric” is the most important one.
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[44] H. Abdi, “Bonferroni and šidák corrections for multiple

comparisons,” Encyclopedia of measurement and statis-
tics, vol. 3, pp. 103–107, 2007.

[45] N. Cliff, Ordinal methods for behavioral data analysis.

Psychology Press, 2014.

[46] Imbalance, 2022. [Online]. Available: https://pypi.org/

project/imblearn/

[47] T. Chen, Z. Li, Y. Zhu, J. Chen, X. Luo, J. C.-S. Lui,

X. Lin, and X. Zhang, “Understanding ethereum via

graph analysis,” ACM Transactions on Internet Technol-
ogy (TOIT), vol. 20, no. 2, pp. 1–32, 2020.

[48] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan,

A. Mockus, A. Sinha, and N. Ubayashi, “A large-scale

empirical study of just-in-time quality assurance,” IEEE
Transactions on Software Engineering, vol. 39, no. 6, pp.

757–773, 2013.

[49] V. Buterin et al., “A next-generation smart contract and

decentralized application platform,” white paper, vol. 3,

no. 37, 2014.

[50] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Check-

ing smart contracts with structural code embedding,”

IEEE Transactions on Software Engineering, 2020.
[51] R. Tonelli, G. Destefanis, M. Marchesi, and M. Ortu,

“Smart contracts software metrics: a first study,” arXiv
preprint arXiv:1802.01517, 2018.
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