
Distinguishing Look-Alike Innocent and Vulnerable Code by
Subtle Semantic Representation Learning and Explanation

Chao Ni
School of Software Technology,

Zhejiang University
Hangzhou, Zhejiang, China

chaoni@zju.edu.cn

Xin Yin
School of Software Technology,

Zhejiang University
Hangzhou, Zhejiang, China

xyin@zju.edu.cn

Kaiwen Yang
College of Computer Science and
Technology, Zhejiang University

Hangzhou, Zhejiang, China
kwyang@zju.edu.cn

Dehai Zhao
Data61, CSIRO

Sydney, Australia
dehai.zhao@data61.csiro.au

Zhenchang Xing
Research School of Computer Science,
Australian National University and

Data61, CSIRO
Canberra, Australia

zhenchang.xing@anu.edu.au

Xin Xia∗
Zhejiang University

Hangzhou, Zhejiang, China
xin.xia@acm.org

ABSTRACT

Though many deep learning (DL)-based vulnerability detection
approaches have been proposed and indeed achieved remarkable
performance, they still have limitations in the generalization as well
as the practical usage. More precisely, existing DL-based approaches
(1) perform negatively on prediction tasks among functions that
are lexically similar but have contrary semantics; (2) provide no
intuitive developer-oriented explanations to the detected results.

In this paper, we propose a novel approach named SVulD, a
function-level Subtle semantic embedding for Vulnerability Detection
along with intuitive explanations, to alleviate the above limitations.
Specifically, SVulD firstly trains a model to learn distinguishing
semantic representations of functions regardless of their lexical sim-
ilarity. Then, for the detected vulnerable functions, SVulD provides
natural language explanations (e.g., root cause) of results to help
developers intuitively understand the vulnerabilities. To evaluate
the effectiveness of SVulD, we conduct large-scale experiments on
a widely used practical vulnerability dataset and compare it with
four state-of-the-art (SOTA) approaches by considering five per-
formance measures. The experimental results indicate that SVulD
outperforms all SOTAs with a substantial improvement (i.e., 23.5%-
68.0% in terms of F1-score, 15.9%-134.8% in terms of PR-AUC and
7.4%-64.4% in terms of Accuracy). Besides, we conduct a user-case
study to evaluate the usefulness of SVulD for developers on un-
derstanding the vulnerable code and the participants’ feedback
demonstrates that SVulD is helpful for development practice.

∗Xin Xia is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616358

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Vulnerability Detection, Developer-oriented Explanation, Subtle
Semantic Difference, Contrastive Learning

ACM Reference Format:

Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia.
2023. Distinguishing Look-Alike Innocent and Vulnerable Code by Subtle
Semantic Representation Learning and Explanation . In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3611643.3616358

1 INTRODUCTION

Software vulnerabilities have caused massive damage to software
systems and many automatic vulnerability detection approaches
have been proposed to prevent software systems from severity
attacks and indeed achieved promising results, which can be broadly
classified into two categories: static analysis approaches [1, 2, 17, 25,
26, 41] and deep learning (DL) approaches [7, 8, 11, 16, 28–31, 43–
45]. The static analysis approaches focus on detecting type-specific
vulnerabilities (i.e., user-after-free) with the help of user-defined
rules or patterns, which highly depend on expert knowledge and
have little chance to find a wider range of vulnerabilities [7, 12]. The
deep learning approaches, benefiting from the powerful learning
ability of deep neural networks, aim at leveraging advanced models
to capture program semantics to identify potential type-agnostic
software vulnerabilities. That is, these approaches automatically
extract implicit vulnerability patterns from previous vulnerable
code instead of requiring expert involvement, which makes deep
learning become a good choice to solve vulnerability detection
problems. However, the existing DL-based approaches still have
two limitations that affect their effectiveness of generalization and
the usefulness of development practice.

The first problem is that existing DL-based approaches have
limited ability to distinguish subtle semantic differences among

ar
X

iv
:2

30
8.

11
23

7v
1

 [
cs

.S
E

]
 2

2
A

ug
 2

02
3

https://doi.org/10.1145/3611643.3616358
https://doi.org/10.1145/3611643.3616358
https://doi.org/10.1145/3611643.3616358

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia

lexically similar functions. For a specific version of a vulnerable
function, the vulnerabilities are usually fixed with a few modifi-
cations to it (i.e., 52.6% vulnerable functions can be fixed within 5
(76.7% within 10) lines of code in our dataset). The fixed functions
can be conceptually treated as non-vulnerable functions. Meanwhile,
we find that the vulnerable function and its corresponding fixed func-
tion are extremely lexically similar (i.e., fixing a vulnerability by
modifying less than 100 CHARs accounts for 46.0% (200 for 65.1%))
but they have significant semantic differences (i.e., vulnerable or non-
vulnerable). Ideally, we expect that a good-performing DL-based
approach can perform equally well in detecting vulnerable func-
tions and their corresponding fixing patches. However, we find that
the SOTA DL-based approaches perform negatively on the fixed
functions (i.e., non-vulnerable ones) and incorrectly classify the
fixed version as vulnerable ones (43.5%-63.1% false positive). Thus,
it is urgently required to pay more attention to semantic differences
among lexically similar functions with contrasting semantics.

The second problem is that existing vulnerability detection ap-
proaches focus on giving binary detection results (i.e., vulnerable
or not) and ignore the importance of providing developer-oriented
natural-language explanations for the results. For example, what
is the possible root cause of such vulnerability? what impacts will
be caused by this vulnerability? Those explanations may help de-
velopers to have a better understanding of the detected vulnerable
code. However, considering the concealment of software vulnerabil-
ities, it is hard to observe two identical vulnerabilities. It is believed
that similar/homogeneous vulnerabilities have similar root causes
or lead to similar impacts. Intuitively, we find that many publicly
available developer forums (i.e., Stack Overflow) share semantically
similar problematic source code, and some of the responses provide
useful and understandable natural language explanations about the
issues, which help developers to intuitively figure out the potential
root cause inside their problematic code.

To mitigate the above two limitations, we propose a novel ap-
proach named SVulD, which is a function-level Subtle semantic
embedding for Vulnerability Detection along with intuitive explana-
tions. It is technically based on pre-trained semantic embedding [22]
as well as contrastive learning [10]. Specifically, to solve the first
issue, SVulD adopts contrastive learning to train the UniXcoder [22]
semantic embedding model in order to learn the semantic represen-
tation of functions regardless of their lexically similar information.
To address the second issue, we build a knowledge-based crowd-
source dataset by crawling problematic codes from Stack Overflow
and fine-tune a BERT question-answering model [14, 39] on 1,678
manually labeled posts to automatically extract the key informa-
tion from high-quality answers, which can provide developers with
intuitive explanations and help them to understand the detected
vulnerable code.

To evaluate the effectiveness of SVulD, we conduct extensive ex-
periments on widely used practical vulnerability dataset [12, 27, 35].
Particularly, our SVulD is compared with four SOTA approaches
(i.e., Devign, ReVeal, IVDetect, and LineVul) by five performance
measures (i.e., Accuracy, Precision, Recall, F1-score, and PR-AUC).
The experimental results indicate that SVulD outperforms all SOTA
baselines with a substantial improvement (i.e., 23.5%-68.0% in terms
of F1-score, 15.9%-134.8% in terms of PR-AUC and 7.4%-64.4% in
terms of Accuracy). Besides, to provide developers with an intuitive

01

02
03

16
17
18
19
20

24
25
26
27
28
29

32
33
34

21

35

lookup_bytestring(netdissect_options *ndo, register const
u_char *bs, const unsigned int nlen)
{

struct bsnamemem *tp;
……
while (tp->bs_nxt)

if (nlen == tp->bs_nbytes &&
tp->bs_addr0 == i &&
tp->bs_addr1 == j &&
tp->bs_addr2 == k &&
memcmp((const char *)bs, (const char *)
(tp->bs_bytes), nlen) == 0)
return tp;

else
tp = tp->bs_nxt;

tp->bs_addr0 = i;
tp->bs_addr1 = j;
tp->bs_addr2 = k;
tp->bs_bytes = (u_char *) calloc(1, nlen + 1);
if (tp->bs_bytes == NULL)

(*ndo->ndo_error)(ndo, "lookup_bytestring: calloc");
memcpy(tp->bs_bytes, bs, nlen);
tp->bs_nbytes = nlen;
tp->bs_nxt = (struct bsnamemem *)calloc(1,
sizeof(*tp));
if (tp->bs_nxt == NULL)

(*ndo->ndo_error)(ndo, "lookup_bytestring: calloc");
return tp;

}

Fixed/Clean Function
lookup_bytestring(netdissect_options *ndo, register const
u_char *bs, const unsigned int nlen)
{

struct enamemem *tp;
……
while (tp->e_nxt)

if (tp->e_addr0 == i &&
tp->e_addr1 == j &&
tp->e_addr2 == k &&
memcmp((const char *)bs, (const char *)(tp-
>e_bs), nlen) == 0)
return tp;

else
tp = tp->e_nxt;

tp->e_addr0 = i;
tp->e_addr1 = j;
tp->e_addr2 = k;
tp->e_bs = (u_char *) calloc(1, nlen + 1);
if (tp->e_bs == NULL)

(*ndo->ndo_error)(ndo, "lookup_bytestring: calloc");
memcpy(tp->e_bs, bs, nlen);
tp->e_nxt = (struct enamemem *)calloc(1, sizeof(*tp));
if (tp->e_nxt == NULL)

(*ndo->ndo_error)(ndo, "lookup_bytestring: calloc");
return tp;

}

Vulnerable Function
01

02
03

16
17
18
19
20

24
25
26
27
28

31
32
33

23

Figure 1: An Out-of-bounds Read Vulnerability (CVE-2017-

12894) in tcpdump

explanation of the detected vulnerable code, we design a quality-
first sorting strategy to prioritize the retrieved semantic-related
post answers. We conduct a user-case study to evaluate whether
our tool can help developers understand the problems in code intu-
itively and the participants’ feedback demonstrates the usefulness
of SVulD. Finally, this paper makes the main contributions as below:
• Wepropose SVulD, a novel function-level approach for vulnerabil-
ity detection with intuitive explanations based on the pre-trained
semantic embedding model, which leverages contrastive learning
technology to obtain the distinguishing semantic representations
among lexically similar functions.

• We comprehensively investigate the effectiveness of SVulD on
vulnerability detection and the generalization of fixed functions.
The experiment results indicate that SVulD outperforms SOTAs
with a substantial improvement (e.g., 23.5%-68.0% in terms of
F1-score, 15.9%-134.8% in terms of PR-AUC). Especially, SVulD
has better generalization performance on fixed functions (e.g.,
7.4%-64.4% in terms of Accuracy).

• To the best of our knowledge, we are first to provide an intu-
itive explanation of the results given by a vulnerability detection
approach, and a user-case study confirms the feasibility of intu-
itively explaining the results with crowdsourced knowledge.

2 MOTIVATING EXAMPLE

Functions usually consist of several lines of code for implementing
a specific program semantic (i.e., functionality) and we use different
labels (i.e., vulnerable, non-vulnerable) to describe the security status
of functions. A vulnerable function includes security defects (e.g.,
CWE-125: Out-of-bounds Read) in its codes, while a non-vulnerable
function is clean. A fixed function previously contains vulnerable
codes but these codes have been fixed with some modifications on
the vulnerable code snippets. Therefore, the fixed functions can be
conceptually treated as non-vulnerable functions.

Fig. 1 shows two versions (the left one is for the vulnerable ver-
sion, while the right one is for the non-vulnerable version) of a
specific function in tcpdump project [21]. This function contains

Distinguishing Look-Alike Innocent and Vulnerable Code... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

a typical Out-of-bounds Read vulnerability CVE-2017-12894. The
if condition statement does not detect the length of the address
at line 17. Comparing the left vulnerable one with the right non-
vulnerable/fixed one, we find that the two versions are lexically sim-
ilar but have distinguishing semantic differences from the security
perspective, which is not an accidental phenomenon. We conduct
statistical analysis about the vulnerable functions as well as their
corresponding fixed functions on the widely used dataset named
Big-Vul (10,900 vulnerable functions) collected by Fan et al. [18] and
find that 52.6% vulnerable functions can be fixed within five lines
of codes (LOCs, added or deleted lines) and 76.7% functions can
be fixed with less than 10 LOCs. From the view of modified chars,
fixing a vulnerability by modifying less than 100 chars accounts
for 46.0% (200 chars for 65.1%). Meanwhile, a function has a ratio
of no more than 5% accounts for 48.7% (10% for 63.4%) between
the number of modified chars and the whole number of chars. All
these statistical results indicate that the vulnerable function and
the corresponding fixed function are extremely lexically similar.

Recently, benefiting from the powerful learning ability of deep
neural networks, many SOTA DL-based vulnerability detection
approaches (e.g., Devign [45], ReVeal [8], IVDetect [27], and
LineVul [19]) have been proposed to capture program semantics
in order to identify potential software vulnerabilities, and these
approaches have achieved promising performance. Ideally, a good-
performing DL-based approach is expected to have a good general-
ization ability, which means that the approach should work well on
both vulnerable and corresponding fixed non-vulnerable functions.
However, a large-scale experiment on Big-Vul shows that all these
SOTA approaches have negative performance on predicting the
fixed functions (i.e., non-vulnerable ones). Specifically, they incor-
rectly classify the fixed functions as vulnerable ones (43.5%-63.1%
false positive, cf. Section 5.1 for details).

Meanwhile, almost all existing vulnerability detection approaches
focus on classifying whether a function is vulnerable but do not
provide developer-oriented natural-language explanations to help
developers understand the detected vulnerable code. For example,
what is the possible root cause of such vulnerability? what impacts
will be caused by this vulnerability? Such types of explanations may
(at least intuitively) help developers to have a deeper understanding
of the detected vulnerable code. Intuitively, many publicly avail-
able user forums (i.e., Stack Overflow) share similar problematic
source code and their corresponding responses may provide useful
and understandable natural language explanations about the issues,
which can intuitively help developers to figure out the potential
root cause inside the vulnerable code.

As shown in Fig. 2, this code snippet has a similar root cause
with the vulnerable function in Fig. 1. It crashes because of the
limited size of defined arrays (i.e., teams and wonGames), which
results in an Out-of-bounds error when reading and writing content
to the last element. Similarly, the function in Fig. 1 will crash when
the last element in their address array does not satisfy the length of
a legal internet address. If developers are provided with a natural
language explanation of the root cause referring to the answer in
Fig. 2, the problem in Fig. 1 will be easier to solve.

Motivating. Two code snippets may be lexically similar but have
distinct security semantics (vulnerable or non-vulnerable), which
needs to embed their semantic difference in a better way. Mean-
while, similar vulnerabilities may have a similar root cause, which
can help participants understand the problematic codes better.

string teams[3];
for (a = 0; a < 4; a++)
{

printf("What is team %d's name? ", a+1);
teams[a] = GetLine();

}

Answer

Odd runtime error in C?
For some reason i keep getting an odd runtime error when i run this program.
It compiles fine, and most of the program works.
#include ……;
main()
{ printf("This program will show you the scores of the basketball games for 1
season.\n");

printf("What is the name of the basketball league? ");
string league = GetLine();
printf("How may games were played by the group? ");
int gamesplayed = GetInteger();
string teams[3];
int wonGames[3], a, b, c;

for (a = 0; a < 4; a++)
{ printf("What is team %d's name? ", a+1);

teams[a] = GetLine();
}
for (b = 0; b < 4; b++)
{ printf("How many times did team %s win? ", teams[b]);

wonGames[b] = GetInteger();
}
printf("\n\n ----===[%s]===----\n", league);
printf("Team Name | Games Played | Games Won | Percentage");
for(c = 0; c < 4; c++)
{ double percent = 100 * (wonGames[c]/gamesplayed);

printf("| %s | %d | %d | %lf |", teams[c], gamesplayed, wonGames[c],
percent);

}
}

Products Search…

The problem seems to be with printing teams[3] in the last for loop. No matter
what i do it crashes after it prints printf(“Team Name | Games Played | Games
Won | Percentage”); The library GetInteger() and GetLine() are the two
functions i use to get input, its from the simpio.h library. Any help would be
appreciated.

Root CauseYou are going out of bounds, since teams has size 3
and a will eventually get the value 3. Indexing starts from 0 to size of
array - 1. SolutionSo change 4 with 3, or increase the size by one.
Do the same for wonGames. Similarly, the loop with the counter c should
be modified too (if the size of the array is not increased).

Home

PUBLIC

Questions

Tags

Companies

COLLECTIVES

Explore Collectives

TEAMS

Create free Team

Figure 2: A simple but similar problematic code along with

an accepted answer in Stack Overflow.

3 OUR APPROACH: SVULD

To investigate the feasibility of our intuitive hypothesis, we pro-
pose a novel framework named SVulD, which integrates software
vulnerability detection and intuitive natural language explanation.
As illustrated in Fig. 3, SVulD consists of two main phases: ❶ train-
ing phase, where the vulnerability detector is trained on the high-
quality dataset and vulnerability explainer is constructed on crowd-
sourced knowledge; ❷ inference phase, where a specific function
is classified as vulnerable or not by the trained vulnerability de-
tector and provide several developer-oriented explanations to the
detected vulnerable function. We present the details of SVulD in
the following subsections.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia

Flattened AST

t0

0

[Prefix]

t1

UniXcoder
(Pre-trained With Contrastive Learning)

1 2 m-1 m

t2 tm-1 tm
+ + + + +

TE......
Function

Post Content

Crowdsourced Knowledge Explainable Knowledge Extractor

Vulnerability Explainer

Post Code

Answer

Root

Impact

Solution

Vulnerability Detector

Function

Vulnerability
Detector

Vulnerability
Explainer

Root

Impact

Solution

Developer-oriented Outputs

Non-Vulnerable

Vulnerable

Training Phase

Inference Phase

Response
Content

Key Knowledges

BERT-QA
PE

Figure 3: The framework of SVulD.

3.1 Vulnerability Detection

In order to discriminate the semantic difference among lexically
similar functions effectively, SVulD adopts contrastive learning
framework with the pre-trained model, UniXcoder [22], as the se-
mantic encoder. The architecture for contrastively training the
UniXcoder-based semantic embedding model is illustrated in Fig. 4.
Contrastive learning [36] is a kind of deep neural network training
process that takes paired functions as input and uses the similar-
ity between the paired functions as labels. The training objective
of contrastive learning is to learn whether two functions are se-
mantically similar regardless of their lexical similarity. Elaborately,
the contrastive learning framework utilizes the encoder to embed
source code into their semantic representations (i.e., hidden vec-
tors) and aims at minimizing the distance between similar functions
while maximizing the distance between dissimilar functions. There
are two important components of the proposed model: an encoder
for embedding functions’ semantics and a learning strategy for
discriminating differences.

3.1.1 Semantic Encoder. Considering many successful applications
of pre-trained models in software engineering (e.g., defect predic-
tion [33] and code summarization [46]), especially the recent work
on vulnerability detection [19], we leverage UniXcoder [22] as our
semantic encoder. It is a unified cross-modal (i.e., code, comment
and abstract syntax tree (AST)) pre-trained model for programming
language and utilizes mask attention matrices with prefix adapters
(i.e., [prefix]) to control the behavior of the model (i.e., encoder only
([Enc]), decoder only ([Dec]) or encoder-decoder ([E2D])). For each
input function, UniXcoder encodes the AST of it into a sequence
while retaining all structural information of the tree. Meanwhile,
in our binary classification setting, we set [prefix] as [Enc] and
fine-tune it on our studied datasets to learn a better representation
of source codes’ semantic information.

3.1.2 Semantic Difference Learning. Our goal is to discriminate
the semantic difference among lexical similar functions, which is
consistent with the target of contrastive learning. That is, minimize
the distance between similar objects (i.e., the function in our study)
while maximizing the distance between dissimilar objects. Hoffer

et al. [24] proposed the triplet network for contrastive learning,
which requires a triplet (𝐹, 𝑃, 𝑁) as the input, where 𝐹 corresponds
to the original source code of the function, 𝑃 refers to the positive
equivalent of 𝐹 , and 𝑁 is the negative one. In our work, for a given
function 𝐹 in the training data, its positive functions are the varying
representation of the same functions and the negative functions
are functions that are different from the given one. Therefore, with
a good semantic presentation, similar functions stay close to each
other while dissimilar ones are far apart.

Fig. 4 shows the architecture of the contrastive learning used
in this work, in which the UniXcoder is the base model for seman-
tic embedding. We use a Pooling layer to connect the UniXcoder
model and the triple network. The triple network has two layers.
The first layer is three identical deep neural networks for feature
extraction of input functions, which can be easily replaced with
other semantic learning models. The second layer of the triplet
network is a loss function based on the cosine distance operator
with transformation operations of projector, which is used to min-
imize the distance between similar functions and maximize the
distance between dissimilar functions. The training objective is to
fine-tune the network so that the distance between the functions
𝐹 and the positive functions 𝑃 is closer than the distance between
the functions 𝐹 and the negative functions 𝑁 , which is illustrated
below:

𝑚𝑎𝑥 (| |𝐸𝐹 − 𝐸𝑃 | | − | |𝐸𝐹 − 𝐸𝑁 | | + 𝜖, 0) (1)

where 𝐸𝐹 , 𝐸𝑃 , and 𝐸𝑁 are the semantic embeddings of function
𝑆 , 𝑃 , and 𝑁 respectively. 𝜖 is the margin of the distance between 𝑆

and 𝑁 . By default, 𝜖 is set to 1, which means the cosine distance
between a function and its irrelevant function should be 1.

3.2 Vulnerability Explanation

Vulnerability explanation aims to provide developer-oriented nat-
ural language descriptions for problematic source code, which in-
volves two aspects: building a code-related crowdsourced knowl-
edge database and extracting key aspects for understanding vulner-
able functions.

Distinguishing Look-Alike Innocent and Vulnerable Code... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[]
Function f

E
ncoder

Batch

Contrastive
Loss

E
ncoder

E
ncoder

Projector
Projector

Projector

𝒈𝜽𝒆𝜽

𝒈𝜽

𝒈𝜽

𝒆𝜽

𝒆𝜽

𝑬𝑭

𝑬𝑷

𝑬𝑵

𝑺𝒊𝒎(𝑬𝑭, 𝑬𝑷)

𝑺𝒊𝒎(𝑬𝑭, 𝑬𝑵)

𝒄𝒐𝒔

Func F

Positive
equivalent
Func P

Negative
irrelevant
Func N

……

Figure 4: Architecture for contrastively training UniXcoder

based semantic embedding model

3.2.1 Crowdsourced Knowledge Database. This phase aims at man-
aging diverse and useful information from developer forums (i.e.,
Stack Overflow) since the developer forums provide a lot of infor-
mation in the form of question and answer (Q&A) about (usually
problematic) codes. Meanwhile, users can also vote on the answers
to distinguish the value of the questions and the corresponding
answers.

In our knowledge database, we focus on two objects: question-
s/posts about a technical problem and answers for solving this
problem. For a question/post, it usually contains a title for concisely
describing a problem, the details of the question, the source codes
involved as well as an optional tag. For an answer, it has a label to
indicate whether it is a suggested one. Meanwhile, the answer may
give a detailed description about why it arises the problem, where the
root cause exists, and how to solve it, especially for the suggested one.
The descriptions are usually presented in the form of natural lan-
guage, while the code presents the potential correctness solutions.
The solution does not always work successfully for each user who
is facing a similar problem because of environmental differences.
However, an explanation of problematic codes will inspire other
users who encounter similar problems to understand the root cause.

Additionally, we connect posts with the same tags for retrieving
answers more efficiently in the next phase (i.e., Results Explainer),
as this process can fuse related posts with relevant problems.

3.2.2 Result Explainer. The crowdsourced code knowledge data-
base helps to fuse useful information when addressing similar prob-
lems, while the result explainer aims at both retrieving relevant
questions/posts involving similar source codes and extracting key
aspects of the problems from the suggested answers.

The first step is to figure out the most (especially semantically)
relevant source codes explicitly. In this paper, for retrieving the
most semantically similar problematic functions, we adopt UniX-
coder to obtain semantic embedding of functions since the model
has been well pre-trained with contrastive learning technology.
Additionally, for a given retrieved post, there usually exists many
responses from different users with varying experiences. All the
diverse responses can be useful since different developers may give
their responses in different development environments (i.e., issues
that occurred in Windows OS or Linux OS). Therefore, apart from
retrieving similar problematic functions, we also design an effective

quality-first sorting strategy as follows to prioritize the most useful
response/explanation.

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑢𝑛𝑐_𝑆𝑖𝑚 × (𝑠𝑐𝑜𝑟𝑒𝑖∑𝑁
𝑗=1 𝑠𝑐𝑜𝑟𝑒 𝑗

× 𝐴𝑠𝑝𝑠.)

𝐴𝑠𝑝𝑠. = 0.5 × 𝐼 (𝐶𝑎𝑢.) + 0.3 × 𝐼 (𝐼𝑚𝑝.) + 0.1 × 𝐼 (𝑆𝑜𝑙 .) + 0.1 × 𝐼 (𝐴𝑐𝑝𝑡 .)
(2)

where 𝐹𝑢𝑛𝑐_𝑆𝑖𝑚 represents the similarity between the code in
a given post and the vulnerable function, 𝑠𝑐𝑜𝑟𝑒𝑖 means the score of
an answer 𝑖 in a post, which is voted by users. A high score usually
reflects the high quality of the answer. 𝑁 represents the number of
answers in the given post and 𝐼 (·) is an indicator function. It equals
1 if the condition is satisfied else it equals 0. For example, 𝐼 (𝐶𝑎𝑢.)
equals 1 when the answer contains the root cause description to
explain a problem. In addition, it is possible that the root cause
(𝐶𝑎𝑢.), the impact (𝐼𝑚𝑝.), and the potential solution (𝑆𝑜𝑙 .) provide
different information for developers to understand the problems
in codes. Therefore, we assign different weights to indicate their
priority. Finally, if an answer is marked as Accept (𝐴𝑐𝑝𝑡 .), it means
the answer has high quality for solving the problem, and we take it
into consideration and assign the weight to 0.1.

The second step is to extract the key aspects for understanding
the problem. As introduced in the crowdsourced knowledge data-
base, the suggested answer may contain a detailed description that
explains key aspects (e.g., root cause, impact, solution, etc.) of the
problem in source codes. In our explanation model, we focus on
the following three aspects: root cause, impact, and solution, which
are usually long clauses or sentences.

To extract the root cause, impact, and solution, we leverage the
BERT-based Question Answering model [14, 39], which is based on
a pre-trained BERT model for retrieving questions and answers in
a given content scope. The input of the model includes a question
and the scope for answering the question. The model outputs the
start and end word index as the answer clause. In our application
of BERT-QA, we adopt the 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 of a suggested answer as the
scope of question answering, and we input three what-is questions
(i.e., “what is root cause”, “what is impact” and “what is the solution”)
into the model to find corresponding answers. Benefiting from
the language modeling capability of BERT, BERT-QA can handle
complex clauses of the root cause, impact, and solution, and select
the most appropriate information from the long response texts.

We train the BERT-QA model with 1,678 question-answer pairs
(920 of reasons, 391 of impacts, and 492 of solutions), which is
constructed manually from 55,627 posts (121,635 answers) in Stack
Overflow. We build both positive and negative questions for which
the answers can or cannot be found in the given posts. The negative
questions help the model to learn when it fails to find any answer in
the scope. This characteristic is extremely important for extracting
the root cause, impact, and solution since not all posts exactly and
completely describe all three aspects. Otherwise, the BERT-QA
model will have no ability to handle negative questions and extract
some irrelevant content as the answer for a question.

4 EXPERIMENTAL DESIGN

In this section, we first present features of the studied datasets, and
then introduce the baseline approaches. Following that, we describe
the performance metrics as well as the experimental settings.

KevinYoung

KevinYoung

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia

4.1 Datasets

Vulnerability Dataset. We use the benchmark dataset provided
by Fan et al. [18] due to the following reasons. The first one is to
establish a fair comparison with existing approaches (e.g., IVDetect,
LineVul). The second one is to evaluate whether existing approaches
have a good generalization performance on detecting the fixed
functions since Fan et al. [18]’s dataset is the only one vulnerability
dataset that provides the fixed version of vulnerable functions. The
last one is to satisfy the distinct characteristics of the real world as
well as the diversity in the dataset, which is suggested by previous
works [8, 23].

Fan et al. [18] built the large-scale C/C++ vulnerability dataset
named Big-Vul from Common Vulnerabilities and Exposures (CVE)
database and open-source projects. Big-Vul totally contains 3,754
code vulnerabilities collected from 348 open-source projects span-
ning 91 different vulnerability types from 2002 to 2019. It has 188,636
C/C++ functions with a vulnerable ratio of 5.7% (i.e., 10,900 vul-
nerability functions). The authors linked the code changes with
CVEs as well as their descriptive information to enable a deeper
analysis of the vulnerabilities. In our work, some baselines need
to obtain the structure information (e.g., control flow graph (CFG),
data flow graph (DFG)) of the studied functions. Therefore, we
adopt the same toolkit with Joern [4] to transform functions. The
functions are dropped out directly if they cannot be transformed
by Joern successfully. We also remove the duplicated functions and
the statistics of the studied dataset are shown in Table 1.

Table 1: The statistic of studied dataset

Datasets # Vul. # Non-Vul. # Total % Vul.: Non-Vul.

Original Big-Vul 10,900 177,736 188,636 0.061
Filtered Big-Vul 5,260 96,308 101,568 0.055

Training 4,208 4,208 8,416 1
Validating 526 9,631 10,157 0.055
Testing 526 9,631 10,157 0.055

Crowdsourced Dataset. Apart from the widely used vulnerabil-
ity dataset, we also need to build a crowdsourced dataset manually
in order to provide explanations for the detected vulnerabilities. In
this paper, we crawl posts as well as their answers from Stack Over-
flow, where the posts are labeled with C or C++ and there is at least
one code snippet in their content. Finally, we obtain 55,627 posts
with 121,635 answers, which are further used to build a knowledge
database.

4.2 Baselines

To comprehensively compare the performance of SVulD with ex-
isting work, in this paper, we consider the four SOTA approaches:
Devign [45], ReVeal [8], IVDetect [27], and LineVul [19]. We
briefly introduce them as follows.

Devign proposed by Zhou et al. [45] is a general graph neural
network basedmodel for graph-level classification through learning
on a rich set of code semantic representations including AST, CFG,
DFG, and code sequences. It uses a novel𝐶𝑜𝑛𝑣 module to efficiently
extract useful features in the learned rich node representations for
graph-level classification.

ReVeal proposed by Chakraborty et al. [8] contains two main
phases: feature extraction and training. In the former phase, ReVeal
translates code into a graph embedding, and in the latter phase,
ReVeal trains a representation learner on the extracted features to
obtain a model that can distinguish the vulnerable functions from
non-vulnerable ones.

IVDetect proposed by Li et al. [27] involves two components:
coarse-grained vulnerability detection and fine-grained interpre-
tation. As for vulnerability detection, they process the vulnerable
code and the surrounding contextual code in a function distinc-
tively, which can help to discriminate the vulnerable code and the
benign ones. In particular, IVDetect represents source code in the
form of a program dependence graph (PDG) and treats the vulner-
ability detection problem as graph-based classification via graph
convolution network with feature attention. As for interpretation,
IVDetect adopts a GNNExplainer to provide fine-grained interpre-
tations that include the sub-graph in PDG with crucial statements
that are relevant to the detected vulnerability.

LineVul proposed by Fu et al. [19] is a Transformer-based line-
level vulnerability prediction approach. LineVul leverages BERT
architecture with self-attention layers which can capture long-term
dependencies within a long sequence. Besides, benefiting from the
large-scale pre-trained model, LineVul can intrinsically capture
more lexical and logical semantics for the given code input. More-
over, LineVul adopts the attention mechanism of BERT architecture
to locate the vulnerable lines for finer-grained detection.

4.3 Evaluation Measures

To evaluate the effectiveness of SVulD on vulnerability detection,
we consider the following five metrics: Accuracy, Precision, Recall,
F1-score, and PR-AUC.

Accuracy evaluates the performance that how many functions
can be correctly labeled. It is calculated as: 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 .
Precision is the fraction of true vulnerabilities among the de-

tected ones. It is defined as: 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

Recall measures how many vulnerabilities can be correctly de-
tected. It is defined as: 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
F1-score is a harmonic mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 and can

be calculated as: 2×𝑃×𝑅
𝑃+𝑅 .

PR-AUC is the area under the precision-recall curve and is a
useful metric of successful prediction when the class distribution is
very imbalanced [23]. The precision-recall curve shows the trade-
off between precision and recall for different thresholds. A high
area under the curve indicates both high recall and high precision,
where high precision corresponds to a low false positive rate, and
high recall corresponds to a low false negative rate.

4.4 Experimental Setting

We implement our vulnerability detection and explanation model
SVulD in Python with the help of PyTorch framework. Besides,
we utilize unixcoder-base-nine [22] from Huggingface [3] as our
basic model, which is a pre-trained model on NL-PL pairs of Code-
SearchNet dataset and additional 1.5M NL-PL pairs of C, C++, and
C# programming language. We fine-tune SVulD on the studied
datasets to obtain a set of suitable parameters for the vulnerability

Distinguishing Look-Alike Innocent and Vulnerable Code... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

detection task and fine-tune BERT-QA model on the manually la-
beled question-answer datasets. All the models are fine-tuned on
four NVIDIA GeForce RTX 3090 graphic cards. During the training
phase, we use Adam with a batch size of 32 to optimize the param-
eters of SVulD. We also leverage GELU as the activation function.
A dropout of 0.1 is used for dense layers before calculating the
final probability. We set the maximum number of epochs in our
experiment as 20 and adopt an early stop mechanism to obtain good
parameters. The models (i.e., SVulD and baselines) with the best
performance on the validation set are used for the evaluations.

5 EXPERIMENTAL RESULTS

To investigate the feasibility of SVulD on software vulnerability
detection and detection result explanation, our experiments focus
on the following four research questions:
• RQ-1. To what extent can the function-level vulnerability detection
performance SVulD achieve?

• RQ-2. How does the paired instance building strategy impact the
performance of SVulD?

• RQ-3. How does the size of paired instance impact the performance
of SVulD?

• RQ-4. How well does SVulD perform on explaining the detection
results?
In RQ1, we aim to investigate the performance of the SVulD

on vulnerability detection by considering it with SOTA baselines
(cf. Section 5.1). In RQ2 and RQ3, we explore the impact of design
options of contrastive learning on the performance of SVulD (cf.
Section 5.2, 5.3). In RQ4, we explore the SVulD’s usefulness for
helping developers understand vulnerable functions (cf. Section 5.4).

5.1 [RQ-1]: Effectiveness on Vulnerability

Detection.

Objective. Benefiting from the powerful representation capability
of deep neural networks, many DL-based vulnerability detection
approaches have been proposed [27, 45]. However, as vulnerable
functions are usually fixed with a few modifications (52.6% vulnera-
ble functions can be fixed within 5 (76.7% for 10) lines of codes), they
have subtle lexical differences with the non-vulnerable functions.
Existing SOTA deep learning approaches (i.e., Devign, ReVeal,
IVDetect, etc.) cannot perform well on the fixed functions (non-
vulnerable). The main reason falls into the limitations of effective
semantic embedding among lexical similar functions. In this paper,
we propose a novel approach SVulD, which is built on a contrastive
learning framework with a pre-trained model as a semantic encoder
as suggested by previous work [9]. The experiments are conducted
to investigate whether SVulD outperforms SOTA function-level
vulnerability detection approaches.
Experimental Design. We consider the four SOTA baselines: De-
vign [45], ReVeal [8], IVDetect [27], and LineVul [19]. These
approaches can be divided into two categories: GNN-based one (i.e.,
Devign, ReVeal and IVDetect) and Pre-trained-based one (i.e.,
LineVul). Besides, in order to comprehensively compare the perfor-
mance among baselines and SVulD, we consider five widely used
performance measures and conduct experiments on the popular
dataset. Since GNN-based approaches usually need to obtain the
structure information of the function (e.g., CFG, DFG), we adopt the

same toolkit with Joern to transform functions. Finally, the filtered
dataset (shown in Table 1) is used for evaluation. We follow the
same strategy to build the training data, validating data, and testing
data from the original dataset with previous work does [19, 34].
Specifically, 80% of functions are treated as training data, 10% of
functions are treated as validation data, and the left 10% of functions
are treated as testing data. We also keep the distribution as same as
the original ones in training, validating, and testing data.

Meanwhile, for a specific function, SVulD needs to select appro-
priate positive instances and negative instances. For the positive
instances, we adopt the different embedding vectors of the same
function by randomly dropping out some weights in the network
of the semantic encoder. For the negative instances, we consider all
the other instances (i.e., functions) in the same mini-batch with the
given instance and use the average semantic vector representation.
We consider three types of paired instances selection strategies
(i.e., SimCL, SimDFE and R-Drop. cf. Section 5.2), and in this RQ, we
adopt the R-Drop strategy since it has overall best performance.

Finally, since our target is to build an effective vulnerability
detection model, especially for discriminating lexically similar but
semantically distinct functions, we further conduct an analysis on
how SVulD performs on the fixed version of vulnerable functions
in the testing dataset.

Table 2: Vulnerability detection results of SVulD compared

against four baselines.

Methods F1-score Recall Precision PR-AUC

Devign 0.200 0.660 0.118 0.115
ReVeal 0.232 0.354 0.172 0.145
IVDetect 0.231 0.540 0.148 0.177
LineVul 0.272 0.620 0.174 0.233

SVulD 0.336 0.414 0.282 0.270

Improv. 23.5%-68.0% – 62.1%-139.0% 15.9%-134.8%

Results. The evaluation results are reported in Table 2 and the
best performances are highlighted in bold. According to the results,
we find that our approach SVulD outperforms all SOTA baseline
methods on almost all performance measures except Recall. In
particular, SVulD obtains 0.336, 0.282, and 0.270 in terms of F1-score,
Precision, and PR-AUC, which improves baselines by 23.5%-68.0%,
62.1%-139.0%, and 15.9%-134.8% in terms of F1-score, Precision, and
PR-AUC, respectively.

In terms of Recall, Devign performs the best (0.660) and LineVul
performs similarly with Devign (0.620), which means that both the
pre-trained model and the GNN-based model can achieve better
performance of Recall.

The performance comparisons of SVulD and four SOTAs on
the fixed functions are presented in Table 3. According to Table 3,
we find that all SOTAs have poor performance on classifying the
fixed versions (i.e., the clean version) in the testing dataset (i.e.,
526 vulnerable functions), while SVulD can achieve the best per-
formance. More precisely, SVulD can correctly classify 319 fixed
versions of functions as clean ones, which outperforms Devign (i.e.,
194), ReVeal (i.e., 297), IVDetect (i.e., 209), and LineVul (i.e., 202)
by 64.4%, 7.4%, 52.6%, and 57.9%, respectively. The results indicate

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia

E

Negative InstancePositive Instance

……
E𝑩𝒖𝒈𝒈𝒚 𝑭𝒖𝒏𝒄.

𝑪𝒍𝒆𝒂𝒏 𝑭𝒖𝒏𝒄.

E

𝑭𝒖𝒏𝒄𝟏

(b) SimDFE

𝑭𝒖𝒏𝒄𝒋
batch

𝑩𝒖𝒈𝒈𝒚 𝑭𝒖𝒏𝒄.P

F

N

𝑭𝒖𝒏𝒄𝒊

(a) SimCL

……

E

𝑭𝒖𝒏𝒄𝟏

𝑭𝒖𝒏𝒄𝒋
batch

𝑭𝒖𝒏𝒄𝒊

(c) R-Drop

P
F

N

N

P
F

N

N

Figure 5: Three different contrastive paired instances construction

Table 3: The effectiveness of SVulD compared against four

baselines on fixed functions in testing dataset

Methods # Correct Accuracy # Improv. % Improv.

Devign 194 36.9% 125 64.4%
ReVeal 297 56.5% 22 7.4%
IVDetect 209 39.7% 110 52.6%
LineVul 202 38.4% 117 57.9%

SVulD 319 60.6% 22-125 7.4% - 64.4%

that SVulD has a better representation of learning ability than the
four baselines.

Answer to RQ-1: SVulD outperforms the SOTA baselines at
the function-level software vulnerability detection. Particularly, it
achieves overwhelming results at both F1-score and PR-AUC, which
indicates that SVulD equipped with contrastive learning as well as
pre-trained model has a stronger ability to learn the semantics of
functions, especially for those functions with lexical similarity but
have distinct semantics.

5.2 [RQ-2]: Impacts of Contrastive Paired

Instances Construction.

Objective. The contrastive learning framework needs to build
triplet paired instances, which are used to measure how close the
two similar instances are and how far the two dissimilar instances
are. Therefore, it is important to conduct a study on how the con-
structed positive instances and negative instances of a given func-
tion affect the learning of semantic representation.
ExperimentalDesign.We consider three types (i.e., SimCL, SimDFE,
and R-Drop) of paired instances (i.e., positive instances and negative
instances) building strategies to train our proposed approach SVulD.
The differences among these strategies are illustrated in Fig. 5 and
we introduce them in detail as follows.

• SimCL (simple contrastive learning) means building the nega-
tive instance of a vulnerable function with its corresponding fixed
version. For its positive equivalent function, we input the original
function twice into the same encoder with different weights (i.e.,
dropout used as noise) inside the model and obtain two embedded
vectors. The two vectors are interchangeably treated as positive
instances.

• SimDFE (simple duplicate function embedding) means in-
putting all functions (noted as 𝑓1, 𝑓2, · · · , 𝑓𝑛 , 𝑛 is the size of batch)
in a batch twice into the same encoder with different weights, which

is inspired by [20]. That is, each function will have two embedded
vectors, noted as 𝑓11, 𝑓12, 𝑓21, 𝑓22, · · · , 𝑓𝑛1, 𝑓𝑛2. Take 𝑓1 as an example,
𝑓11 and 𝑓12 are interchangeably treated as positive instances and
𝑓𝑖 𝑗 are treated as negative instances, where 𝑖 ∈ [2, 𝑛] and 𝑗 ∈ [1, 2].
We use the average difference between 𝑓1 and all negative instances
as their dissimilarity.

• R-Drop (random dropout) means to input one function (noted
as 𝑓1, 𝑓2, · · · , 𝑓𝑛 , 𝑛 is the size of batch) in a batch twice and the rest
function in the same batch once into the same encoder. For the given
function embedded with an encoder twice, we adopt the random
dropout operation to the network to obtain the equivalent positive
embedding. Take 𝑓1 as an example, 𝑓11 and 𝑓12 are interchangeably
treated as positive instances and 𝑓𝑖 (𝑖 ∈ [2, 𝑛]) are treated as nega-
tive instances. We use the average difference between 𝑓1 with all
negative instances as their dissimilarity.

The experimental dataset is set the same as the experiment of RQ-
1 (i.e., 80% for training, 10% for validating, and 10% for testing). We
also consider the five performance measures (i.e., Precision, Recall,
F1-score, PR-AUC, and Accuracy) for comprehensively studying the
impact of different paired instances building strategies. Additionally,
in this study, we set the batch size 𝑛 as 32.

Table 4: The performance difference among three different

paired instances construction strategies

Strategy

Testing Data Fixed function

F1-score Recall Precision PR-AUC # Num Accuracy

SVulD 0.303 0.536 0.211 0.245 243 0.462
SVulD 𝑆𝑖𝑚𝐶𝐿 0.313 0.504 0.227 0.257 269 0.511
SVulD 𝑆𝑖𝑚𝐷𝐹𝐸 0.324 0.481 0.244 0.265 268 0.510
SVulD 𝑅−𝐷𝑟𝑜𝑝 0.336 0.414 0.282 0.270 319 0.606

Improv.
3.3%
to

10.9%
—

7.6%
to

33.6%

4.9%
to

10.2%

10.3%
to

31.3%

Results. The comparison results are reported in Table 4 and the
best performances are highlighted in bold for each performance
measure. According to the results, we can obtain the following
observations: (1) All paired instance construction strategies have
the advantage of learning function semantic embedding in the
scenario of vulnerability detection. Particularly, SimCL, SimDFE,
and R-Drop improve the baseline (UniXcoder without contrastive
learning) by 3.3%-10.9%, 7.6%-33.6%, 4.9%-10.2%, and 10.3%-31.3%
in terms of F1-score, Precision, PR-AUC, and Accuracy. (2) The
SimDFE performs better than the SimCL and the R-Drop is the
dominated one among the three strategies. (3) The SimCL performs

Distinguishing Look-Alike Innocent and Vulnerable Code... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 6: The varying performance of SVulD with different

batch size

worse than the other two strategies and the main reason may come
from the small size of negative instances (i.e., only one negative
instance), which limits the information for SVulD to discriminate
the difference between positive instances and negative instances.
(4) The contrastive learning strategy, to some degree, can decrease
the performance of Recall. However, it has an improvement on two
comprehensive performance measures (i.e., F1-score and PR-AUC),
especially for distinguishing two lexically similar functions with
distinct semantics (i.e., an improvement on Accuracy).

Answer to RQ-2: All paired instance construction strategies
present their own advantages in learning function semantic em-
bedding and the R-Drop strategy performs the best.

5.3 [RQ-3]: Impacts of Paired Instances Size.

Objective. In RQ-2, we find that the number of negative instances
has an impact on SVulD’s performance of learning semantic em-
bedding. Therefore, we want to conduct a deeper experiment on
how the batch size (i.e., the number of negative instances) impacts
the performance of SVulD on discriminating dissimilar instances
from similar ones.
Experimental Design. According to RQ-2, we find that the R-
Drop strategy has an overall better performance than the others.
Meanwhile, considering the fact that the larger the batch size is,
the more memory SVulD consumes, we re-run SVulD with R-Drop
strategy on the following varying settings of batch size: 1, 2, 4, 8,
16, 32, and 64. Because of the limitation of graph memory (i.e., four
NVIDIA RTX 3090) and the size of functions, we cannot perform
larger batch sizes (i.e., 128 or 256). Besides, the experimental dataset
is set as same as that in previous RQs. We evaluate the performance
of SVulD on testing data with two comprehensive performance
measures (i.e., F1-score and PR-AUC), and we adopt Accuracy to
evaluate the performance on the fixed version of vulnerable func-
tions.

Results. The evaluation results of SVulD with varying batch size
are illustrated in Fig. 6. According to the results, we have the follow-
ing research findings: (1) Different number of negative instance has
varying impact on SVulD’s performance. (2) Almost all the metrics
of SVulD (except Accuracy) go up with the increasing of negative
instances when batch size is no larger than 32. When batch size
equals 64, all the performances drop to different degrees. (3) Larger
batch size may not lead to better performance and assigning a batch
size of 32 is a good choice.

Answer to RQ-3: The number of negative instances has an impact
on SVulD’s performance and the larger number may not always
guarantee better performance. In our setting, a median size (i.e.,
32) is more appropriate.

5.4 [RQ-4]: Usefulness for Developers.

Objective. Though many novel approaches have been proposed
and indeed achieved remarkable performance, existing methods
cannot provide a developer-oriented, natural language-described
explanation. For example, what is the possible root cause of such
vulnerability? Such types of explanations may (at least intuitively)
help developers understand the identified vulnerability better. How-
ever, considering the concealment of software vulnerabilities, we
cannot observe two identical vulnerabilities. It is possible that simi-
lar/homogeneous vulnerabilities have similar root causes or lead
to similar impacts. Meanwhile, many publicly available developer
forums (i.e., Stack Overflow) share similar problems and their re-
sponses may provide understandable natural language explanations
about the issues. Therefore, we want to further utilize this useful
and diverse information to provide participants with detailed ex-
planations about the identified problematic codes.
Experimental Design. We first crawl posts labeled with C/C++
from Stack Overflow and build a database (cf. Section 4.1) to fuse
all crowdsourced knowledge for retrieving important explainable
information. Considering that our work focuses on code-related
problems, we filter those posts with no code snippet in their post
content since the code snippet is the critical connective element
when retrieving similar problematic codes. In addition, for retriev-
ing the most semantically similar problematic functions, we adopt
SVulD to obtain semantic embedding of both vulnerable function
and code snippet in post since our model has been well pre-trained
with contrastive learning technology. Then, we adopt the designed
quality-first sorting strategy (cf. Section 3.2) to prioritize the re-
trieved answers. Finally, the well pre-trained BERT-QA model (cf.
Section 3.2) is adopted to extract three optional important descrip-
tions (i.e., root cause, impact, and solution) inside the answer.

Finally, we randomly select 20 vulnerable functions in testing
datasets and invite 10 developers from a prominent IT company
who have 5 to 8 years of experience in software security as our par-
ticipants. Each developer is asked to finish an experiment task that
includes two vulnerable functions as well as their corresponding
explanation recommended by SVulD. We evaluate the usefulness
of our approach by analyzing the answers to the following ques-
tions given by participants. More precisely, SVulD presents each
vulnerable function with five retrieved answers from crowdsourced
knowledge.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia

(a) Devign (b) ReVeal (c) IVDetect (d) LineVul (e) UniXcoder (f) SVulD

Figure 7: Visualization of the separation between vulnerable (denoted by ●) and non-vulnerable (denoted by ▲).

• Q1: Is the explanation related to the vulnerable function?
• Q2: Is the explanation comprehensive (i.e., the root cause, the im-
pacts, and the suggestion. score: 1-5’, 1(low)-3(middle)-5(high))?
Which part is most important?

• Q3: Is the explanation useful to understand the vulnerability?
• Q4: In which result do you find the most desired answer? (score:
0-5’, 0 means no desired answer.)

• Q5: Please sort the explanations according to their usefulness.

For Q1 and Q2, we aim to verify the relatedness and comprehen-
siveness of SVulD’s recommendation. For Q3 and Q4, we aim to
evaluate the usefulness of SVulD, and Q5 is designed to evaluate
the difference between the recommendations and developers’ ex-
pectations.
Results. In Q1, except for 5 negative responses (i.e., providing
unrelated explanations), 15 responses are positive to indicate the re-
latedness of recommended posts. In Q2, the majority (i.e.,19/20 with
larger than 3’) agrees that SVulD’s recommended posts provide the
reasons (root cause) for problematic codes. Besides, all responses
(i.e., ≥ 3) are positive with the suggestion. However, about half
of the participants give less than 3 scores to the impacts of prob-
lematic code, which is consistent with our manually labeled data
(the impacts of problematic code have the least number). Mean-
while, everyone believes that giving the explanation of root cause
is most important for explaining a problematic code. In Q3, 13 par-
ticipants agree that the explanation extracted by SVulD can help
them intuitively understand the vulnerable code and the remain-
ing 7 responses have negative feedback, which also confirms the
concealment of vulnerability. In Q4, we find that 13 responses rank
at top-3 (5 for top-1, 5 for top-2, and 3 for top-3), and 3 responses
are scored with 0, which means that none of the recommended ex-
planations are related to the vulnerable function. Finally, in Q5, we
use Mean Average Precision (MAP) [27] to qualify the gap between
our recommendation and developers’ expectations. We get 0.565 of
MAP, which means SVulD, to some degree, can give an acceptable
recommendation list.

We analyze the negative responses about SVulD and find that
the biggest problem falls into the completeness of our dataset, as
SVulD cannot find the most semantic similar problematic codes
with vulnerable functions in the built dataset (i.e., similarity < 0.5).

Answer to RQ-4: Our user study reveals, to some extent, that
SVulD presents the potential feasibility of assisting developers to
intuitively understand the detected vulnerability.

6 DISCUSSION

This section discusses open questions regarding the performance
and threads to the validity of SVulD.

6.1 Why SVulD outperforms Existing Baselines?

DL-based vulnerability detection approaches have a strong ability
to learn a feature representation to distinguish vulnerable functions
and non-vulnerable ones. Therefore, the efficacy of the models’ vul-
nerability detection depends largely on how separable the feature
representation of the two types of functions (i.e., vulnerable and
non-vulnerable) are. The greater the separability of the two func-
tions, the easier it is for a model to distinguish between them.

We adopt Principal Components Analysis (PCA) [6] to inspect
the separability of the studied models. PCA is a popular dimension-
ality reduction technique and is suited for projecting the original
feature embedding into two principal dimensional embeddings. Be-
sides, we randomly sample the same number of non-vulnerable
functions with vulnerable functions in the testing dataset for more
clear visualization.

Fig. 7 illustrates the separability of the studied approaches. From
the visualization results (Fig. 7(a)–(d)), we can see that the majority
of the functions are mixed and the boundary of each function is
not clear, which indicates the difficulty of baselines in drawing the
decision boundary. In contrast, UniXcoder (shown in Fig. 7(e)) has
better separability than baselines, which indicates the large-scale
pre-trained languagemodel (specially trained on C/C++ codes) has a
stronger ability to understand the semantic of codes. Lastly, Fig. 7(f)
shows the separability of our SVulD.We can observe that SVulD has
the best performance in distinguishing vulnerable functions from
non-vulnerable ones. Equipped with contrastive learning, SVulD
can learn better semantic embedding of functions.

6.2 Threats to Validity

Threats to Internal Validity mainly correspond to the potential
mistakes in the implementation of our approach and other base-
lines. To minimize such a threat, we first implement our model by
pair programming and directly utilize the pre-trained models for
building vulnerability detectors. We also use the original source
code of baselines from the GitHub repositories shared by corre-
sponding authors and use the same hyperparameters in the original
papers. The authors also carefully review the experimental scripts
to ensure their correctness.
Threats to External Validity mainly correspond to the studied
dataset. Even though we have evaluated models on those widely
used vulnerability datasets in literature to ensure a fair comparison

Distinguishing Look-Alike Innocent and Vulnerable Code... ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

with baselines, the diversity of projects is also limited in the fol-
lowing aspects. Firstly, all the studied projects (i.e., functions) are
developed in C/C++ programming language. Therefore, projects
developed in other popular programming languages (e.g., Java and
Python) have not been considered. Secondly, all the studied datasets
are collected from open-source projects, and the performance of
SVulD on commercial projects is unknown. Thus, more diverse
datasets should be collected and explored in future work.
Threats to Construct Validity mainly correspond to the perfor-
mance metrics used in our evaluations. To minimize such a threat,
we adopt a few performance metrics widely used in existing work.
In particular, we totally consider five performance metrics including
Accuracy, Precision, Recall, F1-score, and PR-AUC.

7 RELATEDWORK

7.1 AI-based Software Vulnerability Detection

Software vulnerability detection has attracted much attention from
researchers and many DL-based approaches have been proposed
to automatically learn the vulnerability patterns from historical
data [8, 16, 28, 30, 31, 44, 45], since the powerful learning ability of
deep neural networks has been verified in many software engineer-
ing scenarios [32, 33, 46] (e.g., defect prediction, defect repair).

Dam et al. [13] proposed a vulnerability detector with LSTM-
based architecture. Russell et al. [38] proposed another RNN-based
architecture to automatically extract features from source code for
vulnerability detection. However, these approaches assume source
code is a sequence of tokens, which ignores the graph structure
of the source code. Therefore, Li et al. [29, 30] sequentially pro-
posed two slice-based vulnerability detection approaches, VulDeeP-
ecker [30] and SySeVR [29], to learn the syntax and semantic in-
formation of vulnerable code. Following that, many graph neu-
ral network (GNN) based models [44, 45] are proposed. Cheng et
al. [11] proposed DeepWukong by embedding both textual and
structural information of code into a comprehensive code repre-
sentation. Wang et al. [42] proposed FUNDED by combining nine
mainstream graphs. Cao et al. [7] proposed MVD to detect fine-
grained memory-related vulnerability.

Apart from the coarse-grained models (e.g., function level), re-
searchers also proposed many fine-grained models. Li et al. [28]
proposed VulDeeLocator by adopting a program slicing technique
to narrow down the scope of vulnerability-prone lines of code. Fu
et al. [19] proposed LineVul by leveraging the attention mechanism
inside the BERT architecture for line-level vulnerability detection.
Hin et al. [23] proposed LineVD to formulate statement-level vul-
nerability detection as a node classification task.

Different from previous work, our paper focuses on the effective
semantic embedding of functions, especially those that are lexically
similar.

7.2 Interpretation for AI-based Software

Vulnerability Detection

Developing explainable models is one of the ways for vulnerability
detection, which could provide a fine-grained vulnerability predic-
tion outcome. Specifically, many works have attempted to detect
line-level information by leveraging explainable AI for software
engineering tasks, such as detecting source code lines for defect

prediction [33, 37]. This raises the importance of research for inter-
pretable AI-based models.

However, existing studies are limited to providing partial infor-
mation for the explanation generation. Zou et al. [47] introduced
a high-fidelity token-level explanation framework, which aims at
identifying a small number of tokens that make significant contri-
butions to a detector’s prediction. Li et al. [28] proposed VulDeeLo-
cator to simultaneously achieve high detection capability and high
locating precision and it explains detection results at intermediate
code. Ding et al. [15] proposed a statement-level model via local-
izing the specific vulnerable statements with the assumption of
receiving vulnerable source codes at the function level. Li et al. [27]
adopted explainable GNN to propose IVDetect and provided fine-
grained interpretations. Fu et al. [19] proposed a transformer-based
line-level model named LineVul and leveraged the attention mech-
anism of BERT architecture to explain the vulnerable code lines.
Recently, Sun et al. [40] conducted the first research work on the
application of Explainable AI in silent dependency alert prediction,
which opens the door to the related domains.

Different from existing works that focus on explaining why AI-
models give out the predicted results, our paper aims at making an
explanation for the detected results by providing a develop-oriented
natural language described explanation in order to heuristically help
developers understand the root cause of the detected vulnerabilities.

8 CONCLUSION AND FUTUREWORK

This paper proposes a novel approach SVulD, which is a function-
level subtle semantic embedding for vulnerability detection along
with heuristic explanations, technically based on pre-trained se-
mantic embedding as well as contrastive learning. SVulD firstly
adopts contrastive learning to train the UniXcoder semantic em-
bedding model for learning distinguishing semantic representation
of functions regardless of their lexically similar information. SVulD
secondly builds a knowledge-based crowdsource dataset by crawl-
ing problematic codes in Stack Overflow to provide developers
with heuristic explanations of the detected problematic codes. The
experimental results show the effectiveness of SVulD by comparing
it with four SOTA deep learning-based approaches.

Our future work will investigate the generalization of contrastive
learning to existing deep learning approaches for vulnerability
detection.

9 DATA AVAILABILITY

The replication of this paper is publicly available [5].

ACKNOWLEDGEMENTS

This research is supported by the National Natural Science Founda-
tion of China (No. 62202419), the Fundamental Research Funds for
the Central Universities (No. 226-2022-00064), the Ningbo Natural
Science Foundation (No. 2022J184), and the State Street Zhejiang
University Technology Center.

REFERENCES

[1] 2023. Checkmarx. https://www.checkmarx.com/
[2] 2023. FlawFinder. https://dwheeler.com/flawfinder/
[3] 2023. Hugging Face. https://huggingface.co
[4] 2023. Joern. https://github.com/joernio/joern

https://www.checkmarx.com/
https://dwheeler.com/flawfinder/
https://huggingface.co
https://github.com/joernio/joern

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chao Ni, Xin Yin, Kaiwen Yang, Dehai Zhao, Zhenchang Xing, and Xin Xia

[5] 2023. Replication. https://github.com/jacknichao/SVulD
[6] Hervé Abdi and Lynne J Williams. 2010. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics 2, 4 (2010), 433–459.
[7] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuanqi Tao. 2022.

MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph
Neural Networks. arXiv preprint arXiv:2203.02660 (2022).

[8] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021).

[9] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Graham Neubig, Bogdan
Vasilescu, and Claire Le Goues. 2022. Varclr: Variable semantic representation
pre-training via contrastive learning. In Proceedings of the 44th International
Conference on Software Engineering. 2327–2339.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[11] Xiao Cheng, HaoyuWang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. Deepwukong:
Statically detecting software vulnerabilities using deep graph neural network.
ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021),
1–33.

[12] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-sensitive
code embedding via contrastive learning for software vulnerability detection.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 519–531.

[13] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, and
Aditya Ghose. 2017. Automatic feature learning for vulnerability prediction.
arXiv preprint arXiv:1708.02368 (2017).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[15] Yangruibo Ding, Sahil Suneja, Yunhui Zheng, Jim Laredo, Alessandro Morari, Gail
Kaiser, and Baishakhi Ray. 2021. VELVET: a noVel Ensemble Learning approach
to automatically locate VulnErable sTatements. arXiv preprint arXiv:2112.10893
(2021).

[16] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang,
and Yanjun Wu. 2019. VulSniper: Focus Your Attention to Shoot Fine-Grained
Vulnerabilities.. In IJCAI. 4665–4671.

[17] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang.
2019. Smoke: scalable path-sensitive memory leak detection for millions of lines
of code. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 72–82.

[18] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. A C/C++ code
vulnerability dataset with code changes and CVE summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories. 508–512.

[19] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-based
Line-Level Vulnerability Prediction. (2022).

[20] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive
learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021).

[21] The Tcpdump Group. 2023. tcpdump. https://github.com/the-tcpdump-group/
tcpdump

[22] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. arXiv
preprint arXiv:2203.03850 (2022).

[23] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. 2022. LineVD:
Statement-level Vulnerability Detection using Graph Neural Networks. arXiv
preprint arXiv:2203.05181 (2022).

[24] Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In
International workshop on similarity-based pattern recognition. Springer, 84–92.

[25] Secure Software Inc. 2023. Rough Auditing Tool for Security (RATS). https:
//code.google.com/p/rough-auditing-tool-for-security/

[26] Wen Li, Haipeng Cai, Yulei Sui, and David Manz. 2020. PCA: memory leak
detection using partial call-path analysis. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1621–1625.

[27] Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Vulnerability detection with
fine-grained interpretations. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 292–303.

[28] Zhen Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin.
2021. Vuldeelocator: a deep learning-based fine-grained vulnerability detector.

IEEE Transactions on Dependable and Secure Computing (2021).
[29] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021.

Sysevr: A framework for using deep learning to detect software vulnerabilities.
IEEE Transactions on Dependable and Secure Computing (2021).

[30] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system for
vulnerability detection. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium.

[31] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. 2017. POSTER:
Vulnerability discovery with function representation learning from unlabeled
projects. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2539–2541.

[32] Martin Monperrus. 2018. Automatic software repair: a bibliography. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1–24.

[33] Chao Ni, Wei Wang, Kaiwen Yang, Xin Xia, Kui Liu, and David Lo. 2022. The Best
of Both Worlds: Integrating Semantic Features with Expert Features for Defect
Prediction and Localization. In Proceedings of the 2022 30th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ACM, 672–683.

[34] Chao Ni, Kaiwen Yang, Xin Xia, David Lo, Xiang Chen, and Xiaohu Yang. 2022.
Defect Identification, Categorization, and Repair: Better Together. arXiv preprint
arXiv:2204.04856 (2022).

[35] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris
Mitropoulos. 2021. CrossVul: a cross-language vulnerability dataset with commit
data. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
1565–1569.

[36] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[37] Chanathip Pornprasit and Chakkrit Tantithamthavorn. 2022. DeepLineDP: To-
wards a Deep Learning Approach for Line-Level Defect Prediction. IEEE Trans-
actions on Software Engineering (2022).

[38] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur
Ozdemir, Paul Ellingwood, and Marc McConley. 2018. Automated vulnerability
detection in source code using deep representation learning. In Proceedings of
the 17th IEEE international conference on machine learning and applications. IEEE,
757–762.

[39] Jiamou Sun, Zhenchang Xing, Hao Guo, Deheng Ye, Xiaohong Li, Xiwei Xu, and
Liming Zhu. 2022. Generating informative CVE description from ExploitDB
posts by extractive summarization. ACM Transactions on Software Engineering
and Methodology (TOSEM) (2022).

[40] Jiamou Sun, Zhenchang Xing, Qinghua Lu, Xiwei (Sherry) Xu, Liming Zhu,
Thong Hoang, and Dehai Zhao. 2023. Silent Vulnerable Dependency Alert Predic-
tion with Vulnerability Key Aspect Explanation. In IEEE/ACM 45st International
Conference on Software Engineering (ICSE). IEEE.

[41] Synopsys. 2023. Coverity. https://scan.coverity.com/
[42] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang,

Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang. 2020. Combin-
ing graph-based learning with automated data collection for code vulnerability
detection. IEEE Transactions on Information Forensics and Security 16 (2020),
1943–1958.

[43] Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. 2022.
VulCNN: An Image-inspired Scalable Vulnerability Detection System. (2022).

[44] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy. IEEE, 590–604.

[45] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. In In Proceedings of the 33rd International
Conference on Neural Information Processing Systems. 10197–10207.

[46] Yuxiang Zhu andMinxue Pan. 2019. Automatic code summarization: A systematic
literature review. arXiv preprint arXiv:1909.04352 (2019).

[47] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021.
Interpreting deep learning-based vulnerability detector predictions based on
heuristic searching. ACM Transactions on Software Engineering and Methodology
(TOSEM) 30, 2 (2021), 1–31.

Received 2023-03-02; accepted 2023-07-27

https://github.com/jacknichao/SVulD
https://github.com/the-tcpdump-group/tcpdump
https://github.com/the-tcpdump-group/tcpdump
https://code.google.com/p/rough-auditing-tool-for-security/
https://code.google.com/p/rough-auditing-tool-for-security/
https://scan.coverity.com/

	Abstract
	1 Introduction
	2 Motivating Example
	3 Our Approach: SVulD
	3.1 Vulnerability Detection
	3.2 Vulnerability Explanation

	4 Experimental Design
	4.1 Datasets
	4.2 Baselines
	4.3 Evaluation Measures
	4.4 Experimental Setting

	5 Experimental Results
	5.1 [RQ-1]: Effectiveness on Vulnerability Detection.
	5.2 [RQ-2]: Impacts of Contrastive Paired Instances Construction.
	5.3 [RQ-3]: Impacts of Paired Instances Size.
	5.4 [RQ-4]: Usefulness for Developers.

	6 Discussion
	6.1 Why SVulD outperforms Existing Baselines?
	6.2 Threats to Validity

	7 Related Work
	7.1 AI-based Software Vulnerability Detection
	7.2 Interpretation for AI-based Software Vulnerability Detection

	8 Conclusion and Future Work
	9 Data Availability
	References

