
Unifying Defect Prediction, Categorization, and
Repair by Multi-task Deep Learning

Chao Ni†, Kaiwen Yang†, Yan Zhu†∗, Xiang Chen‡, and Xiaohu Yang†
†Zhejiang University, China. Email: {chaoni,kwyang,yan.zhu,yangxh}@zju.edu.cn

‡ Nantong University, China. Email: xchencs@ntu.edu.cn

Abstract—Just-In-Time defect prediction models can identify
defect-inducing commits at check-in time and many approaches
are proposed with remarkable performance. However, these ap-
proaches still have a few limitations which affect their effectiveness
and practical usage: (1) partially using semantic information or
structure information of code, (2) coarsely providing results to a
commit (buggy or clean), and (3) independently investigating the
defect prediction model and defect repair model.

In this study, to handle the aforementioned limitations, we
propose a unified defect prediction and repair framework named
COMPDEFECT, which can identify whether a changed function
inside a commit is defect-prone, categorize the type of defect, and
repair such a defect automatically if it falls into several scenarios,
e.g., defects with single statement fixes, or those that match a
small set of defect templates. Technically, the first two tasks in
COMPDEFECT are treated as a multiclass classification task, while
the last task is treated as a sequence generation task.

To verify the effectiveness of COMPDEFECT, we first build a
large-scale function-level dataset (i.e., 21,047) named Function-
SStuBs4J and then compare COMPDEFECT with tens of state-
of-the-art (SOTA) approaches by considering five performance
measures. The experimental results indicate that COMPDEFECT

outperforms all SOTAs with a substantial improvement in three
tasks separately. Moreover, the pipeline experimental results also
indicate the feasibility of COMPDEFECT to unify three tasks in a
model.

Index Terms—Just-in-time Defect Prediction, Defect Catego-
rization, Defect Repair

I. INTRODUCTION

The software development process is evolving rapidly

with frequently changing requirements, various development

environments, and diverse application scenarios. It tends to

release software versions in a short-term period. Such a rapid

software development process and limited Software Quality

Assurance (SQA) resources have formed a strong contradiction.

Just-In-Time defect prediction (JIT-DP) [1]–[4] is a novel

technique to predict whether a commit will introduce defects

and it can help practitioners prioritize limited SQA resources on

the riskiest commits during the software development process.

Compared with coarse-grained level (i.e., class/file/module)

defect prediction approaches, JIT-DP works at the fine-grained

level to provide hints about potential defects. Though many

approaches have been proposed to make a great process in

JIT-DP, there still has several limitations in previous work.

Code semantic information and code structure informa-
tion are not fully used. Many approaches [5]–[7] are proposed

based on the commit-level metrics proposed by Kamei et al. [1].

∗ Yan Zhu is the corresponding author.

These metrics are quantitative indicators of modified codes

without considering the semantics of codes. Recently, deep

learning based approaches [4], [8] consider the semantic (i.e.,

the code tokens’ implication around its modified context) and

the structure information (e.g., the relation among commits,

hunks [9], modified files, modified lines, and tokens) of a

change. However, the semantic information is not comprehen-

sive [4] but only represents the modified lines and is part of the

understanding of the code commit. The structure information is

not real representation of code structure [8] but only represents

the structure of git diff . Therefore, the semantic information

(e.g., the code tokens’ implication around its modified or

unmodified context) and the structure information (e.g., data

flow information of code) should be deeply excavated and fully

used simultaneously since previous works [10], [11] have shown

the advantages of structure information for understanding the

functionality/semantic of code.

Prediction type is coarse-grained from two sides: decision
and location. Most of the existing work [1], [4], [12], [13] can

only predict whether a commit or a changed file is buggy or

clean without more precise information about the type of de-

fect (e.g., Missing Throws Exception and Less Specific If),

which may help developers better understand the categories of

the defect and consequently help fix it. Additionally, a commit

or a changed file may involve several hunks which may modify

a few functions. For a commit predicted as a buggy one, it

may be unclear where the defect exactly exists.

Solution to automatically fix defects once identified is
scarcely provided. Some approaches [1], [3] focus on defect

identification, while some approaches [14], [15] focus on

defect repair. However, none of the prior studies treat defect

identification tasks and defect repair tasks simultaneously

although they are closely linked in development activities.

In this study, to address these limitations, we propose a

unified defect prediction and repair framework, COMPDEFECT,

by building a multi-task deep learning model, which can

� predict whether a changed function inside a commit is

defect-prone, � categorize the type of defect, and � repair

the defect automatically. Considering that one of these tasks,

defect repair, is an important but difficult software engineering

problem, we follow previous work [14], [16]–[18] by focusing

on simple types of defects, such as defects with single statement

fixes, or that match a small set of defect templates.

In general, COMPDEFECT consists of two stages: an offline
learning stage and an online application stage. � In the

1980

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00083

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

08
3

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

Clean Version Buggy Version Fixed Version

Fig. 1: The different contents of a specific function in different states: clean version, buggy version, and fixed version.

offline learning stage, we first build a large-scale function-level

dataset named Function-SStuBs4J by extracting the function

body where the modified lines exist in the ManySStuBs4J

dataset, which is originally collected by Rafael-Michael et

al. [16] from 1,000 popular open-source Java projects and

covers 16 defect patterns. In particular, we need to extract three

versions of each function body context where the modified lines

exist in a commit: the clean version, the buggy version, and

the fixed version. The clean version means the version before

the defect was introduced, the buggy version means the version

when the defect was introduced into the function, and the fixed

version means the version when the defect was fixed. Then,

the three versions are treated as the input of COMPDEFECT to

complete two main tasks: (1) a multiclass classification task

and (2) a code sequence generation task. The first task can

help to identify the buggy function and categorize the type

of defect, while the second task can generate the patch to

repair the defect. � In the online application stage, for a given

commit, we first identify the modifications in each hunk. Then,

for each modification, we extract the function body where the

modification exists. After that, we extract the corresponding

previous function body before the modification occurs. Finally,

each modified function with two versions of the function body

(i.e., the current version and the version before the modification

introduced) are fitted into the trained COMPDEFECT to predict

its defect-proneness and subsequently repair it once identified

as a defect-inducing one.
To verify the effectiveness of our proposed model COM-

PDEFECT, we conduct a comprehensive study on Function-

SStuBs4J with tens of state-of-the-art (SOTA) approaches on

several tasks involving: defect prediction [4], [8], defect cate-

gorization [19], and defect repair [14]. Compared with SOTAs,

the superiority of COMPDEFECT is highlighted. In particular,

for the defect prediction task, on average, COMPDEFECT

improves baselines (i.e., DeepJIT and CC2Vec) by 39.0%-

41.7% and by 34.7%-37.3% in terms of F1-score and AUC,

respectively. For the defect categorization task, on average,

COMPDEFECT also improves two types of baselines (i.e., pre-

trained models and none BERT-based models) by at least 62.6%

and by at least 50.1%, respectively. For the defect repair task,

COMPDEFECT still outperforms seven automatic defect repair

baselines and makes an improvement by 83.1% in terms of

Accuracy on average. Finally, the experimental results also

indicate acceptable performances in the pipeline setting (i.e.,

28.5% correct repair after correct classification). Eventually,

this paper makes the following main contributions:

• Technique. We propose a unified defect prediction and

repair framework named COMPDEFECT for function-

level software maintenance1, which can automatically

identify the defect-proneness of a changed function inside

a commit, categorize the type of the defect, and repair

the defect with the appropriate patch by studying the

relations among three different versions of the changed

method/function.

• Dataset. We extend and purify a new function-level

simple statement dataset named Function-SStuBs4J on the

basis of ManySStuBs4J. This dataset can provide more

contextual information on modified functions in commits,

including three versions (i.e., clean version, (non-)buggy

version, and (non-)fixed version) of a function. To our

best knowledge, this is the first function-level multiclass

dataset that can provide comprehensive information on

a changed function in a commit and its corresponding

repaired patch.

• Empirical Study. We comprehensively investigate the

value of unifying defect prediction, defect categorization,

and defect repair into a unitary model. The results indicate

COMPDEFECT outperforms the state-of-the-art and better

utilizes the correlation among three related tasks.

II. BACKGROUND AND MOTIVATION

A. Function Quality State Relevance

A function is the basic unit of a specific implementation for a

given requirement in a modern software development scenario.

Meanwhile, its functionality and quality status may undergo

some changes over time. Take an example from the project

of Activiti shown in Fig. 1. There exists a function named

getStencilset [20] and it has three different versions at different

timestamps: clean version (FuncC), buggy version (FuncB),

and fixed version (FuncF). The buggy version represents the

1https://github.com/jacknichao/CompDefect

1981

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

state when the defect was introduced into the function, the clean

version represents the state before the defect was introduced,

and the fixed version represents the state when the defect was

fixed. Therefore, the definition of a function quantity state is

highly related to the changing relationship between different

versions of a specific function. That is, we can define a function

as a buggy one by comparing its code change difference before

and after. The relevance among these variants of function

should be taken seriously.

B. Software Quality Assurance Task Relevance

The defects can seriously affect the functionality of the

software and eventually cause huge economic losses and even

threaten people’s lives. Thus, many software quality assurance

approaches are proposed such as software defect prediction

(SDP) aims at identifying potential risks in code before the

software is released, software defect categorization (SDC)

aims to explain the specific defect type for developers better

understanding, software defect location (SDL) helps to fight

out where the defect exists, and software defect repair (SDR)

helps to fix the identified defects to improve software quality

for accelerating software development. All the approaches

are extremely important to SQA and they also have some

relationship with each other. That is, SDP and SDC help to

prevent risk to end-users ahead and help developers to better

understand the characteristic of defects for locating. SDL help

to find the location of defect for SDR. Even, an end-to-end

solution is detecting the defect (SDP) first and then repairing it

subsequently (SDR). Therefore, we find that these SQA tasks

are correlated with each other and the relevance among these

tasks should also be taken seriously.

Motivating. The function quality states (i.e., clean, buggy,
and fixed) have intrinsic relevance with each other and the
software quality assurance activities (i.e., prediction, cate-
gorization, and repair) have extrinsic relevance. Intuitively,
we should pay more attention to the relevance among code,
and treat SQA tasks simultaneously.

III. APPROACH: COMPDEFECT

To dig into the relevance of both functions and SQA tasks,

in this paper, we propose a novel multi-task deep learning-

based approach, COMPDEFECT, to better ensure the software’s

qualities. Multi-task deep learning model [21] aims at training

with the same dataset for multiple tasks simultaneously by

using the shared representations to learn the common ideas

between a few related tasks, which consequently increases

the efficiency of the data and potentially accelerates learning

speed for related or downstream tasks. Intuitively, we think

defect prediction, categorization, and repair tasks are relevant

and can benefit each other. The first two tasks (prediction and

categorization) can be treated as a multiclass classification

task, while the last one (repair) can be treated as a sequence

generation task. Meanwhile, the classification task and the

generation task can share one common encoder to extract

semantic structure information of functions. When performing

the generation task, the knowledge of the classification task is

utilized to help generate a better code repair.

The overall framework of our approach is illustrated in Fig. 2,

which contains three sub-figures. The left one (i.e., Fig. 2(a))

illustrates the structure of COMPDEFECT, while the other two

represent the encoder (i.e., Fig. 2(b) is GraphCodeBERT [11])

and decoder (i.e., Fig. 2(c) is Transformer Decoder [22])

used in our proposed COMPDEFECT, respectively. For training

COMPDEFECT, we need three versions of a function as the

input. That is the clean version of a function, the buggy version

of a function, and the fixed version of a function. Details of

COMPDEFECT are presented in the following subsections.

A. Defect Prediction and Categorization: Classification Task

The defect prediction and categorization tasks aim to classify

whether a function is defective and what defect types it

belongs to. Therefore, we need a classifier model and adopt

GraphCodeBERT [11] as the encoder (as shown in Fig. 2(b)) of

COMPDEFECT, which is a pre-trained model for programming

language considering the structure of code. Particularly, it

utilizes the semantic-level information of code (i.e., data flow)

for pretraining instead of only using the token sequence of

code like CodeBERT.

The input of COMPDEFECT’s encoder involves two function

bodies: FuncC and FuncB . Then, we use tree sitter [23]

to transform the two functions into code tokens to build

the data flow graph (DFG), which can help to construct the

dependencies among variables. In particular, for a source code

C = {c1, c2, . . . , cm}, COMPDEFECT first parses the source

code into an abstract syntax tree (AST), which includes syntax

information of the code. Besides, the leaves in AST are used

to identify the sequence of variable V = {v1, v2, . . . , vk}.

Therefore, the variable is treated as a node of the graph, while

the relationship between vi and vj is treated as a directed

edge from vi to vj of the graph e = 〈vi, vj〉, which means

the value of vj comes from vi. We denote the collection

of directed edges as E = {e1, e2, . . . , el} and consequently

the graph is denoted as G(C) = (V,E), which represents

the dependency relationship among variables in the source

code C. Then, for the clean version of the function, we

concatenate clean code and the collection of variables as

the input sequence Xclean = {[CLS],Cclean , [SEP],Vclean} and

accordingly, the buggy version of the function is transformed as

Xbuggy = {[CLS],Cbuggy , [SEP],Vbuggy}. [CLS] is a special token

in front of the whole sequence, [SEP] is another special token

to split two kinds of data types. After that, we get a pair

(Xclean, Xbuggy) that represents clean and buggy versions of

a given function.

COMPDEFECT’s encoder takes as input each pair (i.e.,

(Xclean, Xbuggy)) and outputs a series of contextual embedding

vectors of each token H =
{
h[CLS], hC , h[SEP], hV

}
, in which

hC = {hc1 , hc2 , ..., hcn} and hV = {hv1 , hv2 , ..., hvn}. We only use

the embedding vector of [CLS] for the classification task

following [11], which works as the contextual embedding

of the whole input. Therefore, we get the semantic contextual

1982

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: (a) The overall framework of COMPDEFECT. (b) The detail of the encoder. (c) The detail of the decoder.

representation of the clean function h[CLS]clean
and the buggy

function h[CLS]buggy
.

To capture the relation between the clean function (i.e.

h[CLS]clean
) and the buggy function (i.e. h[CLS]buggy

), we adopt

neural tensor network (i.e., NTN, denoted as Γ) and denote the

relation as hNT . The three vectors are concatenated and then

fed into a fusion network consisting of multiple feed-forward

networks. Finally, we get a more informative vector hchange ,

which will be fed into an MLP classifier. The classifier outputs

the probability of each class.

For defect prediction and categorization task, given a

pair (Xclean, Xbuggy), the goal is to learn the probability of

Pθ (y|(Xclean, Xbuggy)). This task is optimized with a cross

entropy loss, denoted as Losscls.

B. Defect Repair: Sequence Generation Task

The defect repair task aims to generate a fixed function

for an identified buggy one, directly. Therefore, we need a

generation model and adopt Transformer decoder [22] as the

decoder of COMPDEFECT. The standard seq2seq architecture

usually has a cross-attention mechanism connecting the encoder

and decoder. To fully use the information embedded in the

encoder, we replace h[CLS]buggy
with hchange and the final

vector Hcross is used to interact with the decoder:

Hcross = hchange ⊕ hCbuggy
⊕ h[SEP]buggy ⊕ hVbuggy

Notice that we use hchange, the fused vector containing both

clean and buggy information and the relation between them,

instead of h[CLS]buggy
, in order to involve more knowledge of

classification task when performing generation tasks, we believe

that the valuable embedded information for classification task

is also useful for generation task.

For the sequence generation task, the goal

is to learn the probability of Pθ(Y |X) =
∏n

j=0 Pθ(yj |yj−1, yj−2, . . . , y0, (Xclean, Xbuggy)), n is the

maximum length of target. This task is optimized with a stand

sequence generation loss, denoted as Lossgen. Meanwhile, we

also adopt Beam search which memorizes the n best sequences

up to the current state of the decoder. The successors of these

memorized states are computed and sorted based on their

cumulative probability. After that, the next n best sequences

are passed to the next status of the decoder. As for evaluating

COMPDEFECT, we only choose the sequence with the highest

probability.

C. Optimization of COMPDEFECT

When a model has more than one task, a few task-specific

objective functions need to be combined into a single aggre-

gated one that the model tries to maximize it. Therefore, it

is extremely important to exactly combine various objective

functions into one that is the most suitable for multi-task

learning. In COMPDEFECT, there mainly exist two tasks: multi-

class classification task and sequence generation task. Since

in our usage scenario (i.e., function-level software defect

prediction and defect repair), we think the two tasks are

equivalently important. Thus, COMPDEFECT addresses the

multi-task optimization by balancing the individual objective

functions for the two different tasks. That is, the final opti-

mization function (Loss(X)) is the sum of two individual

objective functions (Losscls(X) for the classification task,

and Lossgen(X) for the sequence generation task), which

is the one that COMPDEFECT tries to minimize. Formally,

Loss(X) = α ∗ Losscls(X) + β ∗ Lossgen(X) (both are set

to 1 in our study).

IV. EXPERIMENTAL SETTING

We first introduce the dataset we experiment on, then we

present the baselines for different types of tasks. Following that,

the evaluation metrics, and experimental settings are presented.

A. Dataset

ManySStuBs4J [16] is a collection of single-statement defect-

fix changes and is annotated by whether those changes match a

few defect patterns (i.e., 16 patterns [16]). Besides, considering

the importance but challenge of program repair, fixing simple

defects (e.g., one-line defects or defects that fall into a small set

1983

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

of templates) is a good way to obtain acceptable performance

and ManySStuBs4J is a good starting point dataset since it is

widely used in many software quality-related tasks [24], [25].
However, the details of this dataset are too simple to satisfy

our task’s requirement. That is, the original dataset mainly

contains the types of defects, the one statement buggy code,

and one statement fixed code. However, our model needs

the whole information about a changed function to capture

more information inside the code. Besides, our study aims

at combining the defect prediction task, defect categorization

task and defect repair task together, we also need to collect

negative commits (i.e., clean commits) from studied projects

since the original dataset only contains the positive commits

(i.e., buggy commit). Therefore, we need an extended version

of ManySStuBs4J.
More precisely, we extend the existing dataset

ManySStuBs4J from the following aspects: � Function Body.

The original dataset only provides the buggy line number

and its corresponding fixed line number in commits. We

need to extract the bodies of the two types of functions

for the positive instances. � Negative Functions. We use

the opposite strategy (i.e., used in ManySStuBs4J) to select

negative commits for extracting negative functions since our

work focuses on defect prediction which needs both positive

functions and negative functions. � Multiple Versions. We

extract three versions (i.e., clean version, (non-)buggy version,

and (non-)fixed version) of all functions since we believe the

difference among the three versions can help the model better

understand the semantic information of a function.
Here, we introduce the process of our dataset extension

and data extraction. Notice that we start from the COMMIT

stored in ManySStuBs4J rather than the FUNCTION. In

particular, as for extracting the positive/negative functions, we

follow the same steps (e.g., selecting the same Java projects,

identifying non-defect-fixing/defect-fixing commits, selecting

single statement changes, creating Abstract Syntax Trees, and

filtering out clear refactoring) as the ManySStuBs4J took:

1) We identify bug-fixing(non-bug-fixing) commits whose

commit message contains one(none) of these keywords (i.e.,

error, buy, fix, issue, mistake, incorrect, fault, defect, flaw,

and type). That is, we use the opposite selection strategy

between selecting positive commits and negative commits.

2) We follow the same strict criteria used in ManySStuBs4J

to select the commits with single statement modification.

3) We identify each scope of the modification (i.e., hunk in

git) in the filtered commits and extract their bug-fixing(non-

bug-fixing) function bodies. That is, we split one commit

into hunks and extract the function body of modification in

each hunk.

4) We use the git blame to find where the deleted lines are

introduced and consequently identify the corresponding

bug-inducing(non-bug-inducing) commits. Then, we extract

the corresponding bug-inducing(non-bug-inducing) function

bodies.

5) We extract the corresponding clean versions (i.e., the last

version in time before the bug-inducing(non-bug-inducing)

functions are modified) using PyDriller [26]. Therefore,

we obtain the three versions of the function body for

positive/negative functions.

Meanwhile, we also design four criteria for filtering unsuit-

able functions in (Steps 3-5), such as: � Modified statements

exist outside a function. This work focuses on the simple sce-

nario, that is, function-level single statement defect prediction

and defect repair. Therefore, we filter out those statements that

lie outside the scope of a function, for example, statements for

defining a global variable or object in a class. � Defects are

introduced in newly added files or functions. COMPDEFECT

needs three versions of a specific function. For the newly added

defective ones, the clean version does not exist. Therefore, we

filter out such cases. � Function names cannot be identified.

On one hand, the modifications in a commit are made to

the function name, and then it is difficult to solve. On the

other hand, the line of the function is mapped incorrectly. In

ManySStuBs4J, the authors label the line number of buggy

or fixed code based on the result of AST, which may not be

exactly correct with the original line in the source code file. �
Other failed issues. When errors occur in PyDriller or in the

original dataset, we cannot get the correct result.

Finally, we build the dataset and name it as Function-
SStuBs4J for defect prediction, defect categorization, and

defect repair by extracting the three versions of the function

with the help of PyDriller [26] tool. The statistical information

is shown in Table I.

TABLE I: The statistics of Function-SStuBs4J

Defect Type # Count % Ratio Defect Type # Count % Ratio

Same Function Change Caller 381 1.81% Same Function Less Args 441 2.1%

Change Identifier Used 1,599 7.6% Same Function More Args 1,169 5.55%

Change Modifier 329 1.56% Same Function Swap Args 139 0.66%

Change Numeric Literal 991 4.71% Change Boolean Literal 330 1.57%

Change Operand 161 0.76% Less Specific If 484 2.3%

Change Binary Operator 523 2.48% More Specific If 570 2.71%

Change Unary Operator 338 1.61% Missing Throws Exception 10 0.05%

Wrong Function Name 3,012 14.31% Delete Throws Exception 32 0.15%

B. Baselines

Considering that there has no existing work which can predict

whether a modification to a function may introduce defects,

subsequently categorize the type of defect, and consequently

repair it automatically, we make a comprehensive comparison

among three types of baselines. More precisely, we consider

two well-known baselines for the prediction task, consider five

baselines for the categorization task which can be divided into

two types: BERT-based or none BERT-based, and consider

seven state-of-the-art baselines for the repair task suggested by

Zhong et al. [27]). Table II gives a brief introduction to these

baselines. Notice that we do not consider those defect repair

tools especially the ones that need bug-triggering tests since

the studied dataset does not have corresponding test cases.

C. Evaluation Metrics
To evaluate the effectiveness of COMPDEFECT, we consider

the following performance measures:

Precision is the fraction of correctly classified functions

among the predicted ones, which can be calculated as TP
TP+FP .

1984

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Baselines used in the comparison

Baselines
Tasks

Brief Description Venue
P C R

DeepJIT [4] 	 a CNN model to learn high-dimensional semantic features for both commits message and commit code MSR 2019

CC2Vec [8] 	 adopt a Hierarchical Attention Network to capture the hierarchical structure inside a commit ICSE 2020

BERT [19] 	 a pre-train deep bidirectional representation from the unlabeled text and consists of 12-layer transformers arXiv 2018

RoBERTa [28] 	 a robustly optimized version of BERT arXiv 2019

CodeBERT [29] 	 a pre-trained model on the basic of BERT for the programming language arXiv 2020

TextCNN [30] 	 a simple but well-perform CNN with one layer of convolution on top of word vectors obtained from

an unsupervised neural language model

EMNLP 2014

FastText [31] 	 a lightweight library for efficient learning of word representations and sentence classification arXiv 2016

SequenceR [14] 	 proposes a novel buggy context abstraction process to organize the fault localization information into

a representation

TSE 2019

CoCoNut [32] 	 uses ensemble learning on the combination of CNN and a new context-aware neural machine translation

architecture to fix bugs in multiple programming languages

ISSTA 2020

Mashhadi et al. [33] 	 a variant of CodeBERT-based approach MSR 2021

Tufano et al. [34] 	 An RNN-based bug fixing model by abstracting identifiers and literals in the buggy code to simplify

the input and output

TOSEM 2019

CODIT [35] 	 a two-stage approach with LSTM-based Neural Machine Translation Models TOSEM 2020

Recoder [36] 	 a syntax-guided decoder to generate edits on the AST of the buggy function/method FSE 2021

Edits [37] 	 a model to generate patch by inserting and deleting tokens of buggy code ASE 2020

∗“P”: Defect Prediction; “C”: Defect Categorization; “R”: Defect Repair.

Recall measures how many defective functions can be

correctly classified, which is defined as TP
TP+FN .

F1-score is a harmonic mean of Precision and Recall and

can be calculated as: 2×P×R
P+R .

AUC: the Area Under the receiver operator characteristics

Curve (AUC) is also used to measure the discriminatory power

of COMPDEFECT and baselines, i.e., the ability to differentiate

between defective or non-defective functions. AUC calculates

the area under the curve plotting the true positive rate (TPR)

versus the false positive rate (FPR) while applying multiple

thresholds to determine if a function is defect-inducing or not.

Accuracy evaluates the performance of how many functions

can be correctly classified. It is calculated as TP+TN
TP+FP+TN+FN .

D. Empirical Setting

We implement our COMPDEFECT in Python with the help

of the Pytorch framework and pre-trained model on Hugging-

face. The pre-trained GraphCodeBERT model is used as the

encoder for embedding training samples and uses Transformer

decoder [22] as the generator of fixed code. Besides, each

version function is embedded as a 768-dimensional vector.

During the training phase, the parameters of COMPDEFECT

are optimized using Adam with a batch size of 32. We also use

ReLu and tanh as the activation function. A dropout of 0.1

is used for dense layers before calculating the final probability.

The maximum number of epochs in our experiment is 50.

The models (i.e., COMPDEFECT and baselines) with the best

performance on the validation set are used for our evaluations.

As for dataset split, we use 80%, 10%, and 10% of

COMPDEFECT as training data, validation data, and testing

data, respectively. Notice that, for each part of the data, we

keep the distribution among each type of function as same as

the original one.

V. RESULTS AND ANALYSIS

To comprehensively evaluate the effectiveness of COMPDE-

FECT, we investigate the following three research questions.

• RQ-1: How does COMPDEFECT perform on defect predic-

tion compared with state-of-the-art baselines?

• RQ-2: How does COMPDEFECT perform on defect catego-

rization compared with state-of-the-art baselines?

• RQ-3: How does COMPDEFECT perform on defect repair

compared with the state-of-the-art baselines?

A. [RQ-1]: Defect Prediction
Objective. Just-in-time (JIT) defect prediction has received

much attention in software engineering and many state-of-the-

art approaches are proposed [4], [8], [12]. These approaches are

built from the simple model (e.g., CBS+) on manually designed

features to the complex model (e.g., DeepJIT) on semantic

features and have made great progress in the JIT scenario. As

for COMPDEFECT based on neural network, it can also identify

whether a commit is a defect-inducing one by predicting if the

modification to a function will introduce a defect. Therefore,

we want to make a comparison between COMPDEFECT with

those SOTA semantic features-based approaches.

Experiment Design. We treat recently proposed DeepJIT and

CC2Vec as the baseline methods. There are two differences

between COMPDEFECT and the two baselines: 1) the two

methods can only estimate the defect-proneness of a commit at

the commit level and a commit may contain a few hunks which

change a few functions, while COMPDEFECT estimates whether

a function in a hunk of a commit is defect-inducing. That is,

COMPDEFECT can estimate the defect-proneness of a commit

at the hunk(function)-level, which means COMPDEFECT is

more fine-grained than the baseline ones. 2) the two baselines

can only predict a commit as a defect-inducing one or a clean

one, while COMPDEFECT can not only predict a commit defect-

proneness but also can categorize the types of defects.

1985

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

Considering the two differences and to make a fair commit-

level comparison, we make the following two hypothesizes

for COMPDEFECT: 1) a function in a hunk of a commit will

be treated as a buggy one if COMPDEFECT predicts it as a

non-clean one; 2) a commit is predicted as buggy one if there

exists at least one function in a hunk of a commit predicted by

COMPDEFECT as buggy one, otherwise the commit is predicted

as a clean one.

Meanwhile, considering the difference in the granularity of

two baselines (i.e., commit-level), we also make adjustments

to the dataset splitting. Particularly, as for training data (i.e.,

80% from the original split dataset), we identify the unique

commits from both positive and negative functions to build

the commit-level training data for the two baselines. Similarly,

we adopt the same method to build the validation data and

testing data. Therefore, all methods (i.e., DeepJIT, CC2Vec, and

COMPDEFECT) are compared on the newly built dataset at the

commit level. We adopt the widely used performance measures

(i.e., Precision, Recall, F1-score, and AUC) to evaluate the

difference among those methods.

TABLE III: Comparison among DeepJIT, CC2Vec and Ours

Approach Precision Recall F1-score AUC

DeepJIT 0.504 0.352 0.414 0.513

CC2Vec 0.464 0.345 0.396 0.492

COMPDEFECT 0.750 0.619 0.679 0.785

Improv.
DeepJIT 32.8% 43.2% 39.0% 34.7%

CC2V ec 38.2% 44.2% 41.7% 37.3%

Results. The evaluation results are reported in Table III and

the best performance is highlighted in bold. According to

the results, we find that our approach COMPDEFECT has

a significant advantage over DeepJIT and CC2Vec on all

performance measures. In particular, COMPDEFECT obtains

0.679 and 0.785 in terms of F1-score and AUC, which

improves DeepJIT and CC2Vec by 39.0% and 41.7%, by

34.7% and 37.3% in terms of F1-score and AUC, respectively.

As for Precision and Recall, COMPDEFECT also has a large

improvement. Specifically, COMPDEFECT improves DeepJIT

and CC2Vec by 32.8% and 38.2%, by 43.2% and 44.2%

in terms of Precision and Recall, respectively. Besides, we

surprisingly find that in our scenario, CC2Vec performs a little

worse than DeepJIT, which, to some extent, means CC2Vec

cannot capture more information than DeepJIT for the existing

state-of-the-art techniques can utilize.

Answer to RQ-1: COMPDEFECT can accurately identify the
defect-proneness of commit and outperform state-of-the-arts
significantly.

B. [RQ-2]: Defect Categorization
Objective. Although many approaches [1], [2], [8], [38] have

been proposed for JIT-DP, these approaches can only predict

a commit or a changed file as defect-inducing or not. They

cannot categorize the type of defect. Different from previous

work, COMPDEFECT can categorize the type of defect the

defect-inducing function belongs to. We totally consider 16

types of defects [16]. Reporting the type of defect rather than

“buggy-or-clean” can help developers better understand such a

defect. COMPDEFECT makes certain progress in the JIT-DP

scenario even if we only consider the one-statement function-

level modification setting.

TABLE IV: Comparison among five baselines and COMPDE-

FECT on categorizing the types of defect

Approach Precision Recall F1-score AUC ovo AUC ovr

BERT 0.301 0.084 0.083 0.693 0.731

RoBERTa 0.227 0.086 0.085 0.712 0.751

CodeBERT 0.226 0.115 0.124 0.695 0.754

TextCNN 0.223 0.090 0.091 0.685 0.726

FastText 0.334 0.230 0.265 0.657 0.725

COMPDEFECT 0.401 0.295 0.319 0.723 0.776

Improve

BERT 33.1% 250.5% 283.8% 4.3% 6.1%

RoBERTa 76.9% 245.1% 274.8% 1.6% 3.3%

CodeBERT 77.8% 157.5% 158.5% 4.0% 2.9%

TextCNN 79.9% 226.8% 251.3% 5.5% 6.8%

FastText 20.2% 28.4% 20.7% 10.0% 7.0%

Avg. 57.6% 181.7% 197.8% 5.1% 5.2%

∗“OVO”: stands for one-vs-one; “OVR”: stands for one-vs-rest.

Experiment Design. To verify COMPDEFECT’s effectiveness

in categorizing defects, we choose three BERT-based baselines:

BERT, RoBERTa, and CodeBERT, which are widely used in

natural language processing and software engineering [39],

[40], and then be used for downstream tasks (e.g., multiclass

classification). We use these pre-trained models (i.e., “bert-

base-uncased”, “roberta-base” and “microsoft/codebert-base”)

from Huggingface. For a fair comparison, the input of these

baselines is the same as the input of COMPDEFECT (i.e., buggy

version and clean version). Additionally, since the limitation

of the maximum length of baselines’ input, we use the same

strategy in COMPDEFECT to concatenate the two functions

vertically to assemble the whole input. Meanwhile, to further

investigate the effectiveness of our approach, we also compare

COMPDEFECT with another two none BERT-based but well-

performed multiple classification approaches (i.e., FastText and

TextCNN) since no existing models proposed in JIT-DP for

the multi-classification task. We directly use their replications

to conduct this experiment to reduce the internal threat.

We also consider the same performance measures used in

RQ-1. These classification metrics are defined for binary cases

by default. When applying these binary metrics to multiclass,

we adopt the “macro” averaging strategies, which are widely

adopted in prior work [40]–[43].

Results. The evaluation results are reported in Table IV and

the best results are highlighted in bold. On average, we find

that COMPDEFECT outperforms baselines by 57.6%, 181.7%,

and 197.8% in terms of Precision, Recall, and F1-score, respec-

tively. In particular, COMPDEFECT improves BERT by 33.1%,

250.5%, and 283.8% in terms of Precision, Recall, and F1-

score, respectively. Compared with RoBERTa, COMPDEFECT

improves RoBERTa by 76.9%, 245.1%, and 274.8% in terms

of Precision, Recall, and F1-score, respectively, which means

that even though COMPDEFECT and RoBERTa have the same

architecture, COMPDEFECT can learn more information with

1986

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

its related task (i.e., defect fix). Compared with CodeBERT,

COMPDEFECT improves CodeBERT by 77.8%, 157.5%, and

158.5% in terms of Precision, Recall, and F1-score, respectively,

which also means COMPDEFECT can benefit from multi-task

learning. As for TextCNN, COMPDEFECT improves it by

79.9%, 226.8%, 251.3% in terms of Precision, Recall, and

F1-score. As for FastText, COMPDEFECT also obtains better

performance and improves it by 20.2%, 28.4%, and 20.7%, in

terms of Precision, Recall, and F1-score, respectively. In terms

of AUC, COMPDEFECT still performs the best. All results

indicate the priority of COMPDEFECT in categorizing the types

of defects.

Meanwhile, we also present the detailed results of each

approach on classifying the types of function as shown in

Table V, in which we show the numbers of functions that

are correctly classified by each approach and highlight the

best one with a light gray background color. Additionally, we

show the ratio of correctly classified functions by FastText

and COMPDEFECT in the last two columns since they perform

better, and highlight the top-5 performances. According to

the results, we can obtain the following observations: (1).

COMPDEFECT performs the best in classifying the non-

clean functions and can almost work well on all types of

defects except two types (i.e., both “Delete Throws Exception”

and “Same Function Swap Args” are incorrectly classified.).

(2). Almost all baselines except FastText perform badly on

classifying non-clean functions but perform better on clean ones,

which means these baselines cannot distinguish the intrinsic

difference among these types of defects. (3). No methods

can identify the type of “Same Function Swap Args”, which

indicates the difficulty in understanding the characteristic of

this type of defect. By analyzing the definition of this type, it

does seem to be hard to understand the difference since the

swapped two parameters are the same type. (4). Both BERT-

based approaches (e.g., COMPDEFECT) and none BERT-based

approaches (e.g., FastText) have varying abilities in classifying

the types of defects.

Answer to RQ-2: COMPDEFECT has a good performance
on distinguishing different types of defects, especially for

“Wrong Function Name”, “Change Modifier”, “Change Numeric
Literal”, “Same Function Less Args” and “Missing Throws
Exception”.

C. [RQ-3]: Defect Repair

Objective. Defect repair research is active and mostly domi-

nated by techniques based on static analysis [44] and dynamic

analysis [17]. Even existing approaches have achieved promis-

ing performance, currently, automated defect repair is limited

to simple cases, mostly one-line patches [17], [18]. Recently,

defect repair tools based on machine learning, especially for

deep learning technology are proposed [14], [32]–[37], which

promote the further development of defect repair, and mainly

focus on one-line path scenario. Therefore, we want to evaluate

the performance difference between the SOTA baselines and

COMPDEFECT.

Experiment Design. Though defect categorization and defect

repair should be intrinsically connected in practice (e.g.,

COMPDEFECT), all baselines are proposed on the hypothesis

that the defects are correctly identified and located. That is,

these baselines cannot identify whether a function is defect-

inducing and cannot categorize the type of defect in such

a function. Therefore, for a fair comparison, we compare

COMPDEFECT with baselines on all defective functions with

the assumption that the defective lines are correctly identified.

We filter all negative functions (i.e., clean functions) in the

original dataset and keep only positive functions (i.e., buggy

functions, 10,508). Meanwhile, different approaches may have

various pre-processing (e.g., abstraction) on a given buggy

function. However, not all these operations can be successfully

executed even using the scripts provided by the authors of

all baselines. Therefore, for each baseline, the final evaluation

size of positive functions may not always be the same, and we

remove the functions which are incorrectly pre-processed and

keep the left as the whole dataset. Then, for each baseline, we

split all these kept positive functions into 80%, 10%, and 10%

as training data, validating data, and testing data, respectively.

In addition, the split of all positive functions differs from

the one used to train our approach COMPDEFECT. That is, the

testing data of the positive function and the training data in

RQ-2 may overlap. Thus, we need to remove the overlapping

for a fair comparison between baselines and COMPDEFECT.

Here, we take one of the baselines (“SequenceR”) as an

example to explain the setting. We filter negative functions

in the original dataset and keep only positive functions. We

refer to it as Function-SStuBs4Jpos , which contains 16 types of

positive functions. Besides, SequenceR conducts an abstraction
operation on the function. However, some functions in Function-

SStuBs4Jpos cannot be executed successfully with the tool

provided by SequenceR. Thus, we filter out these functions

and finally Function-SStuBs4Jpos has positive functions with 14

types. We split 80%, 10%, and 10% of Function-SStuBs4Jpos
as training data (7,474), validation data (934), and testing data

(934), respectively, and the distribution among each type of

function as same as the original one.

Moreover, for fully evaluating the capability of COM-

PDEFECT, we directly evaluate the COMPDEFECT trained

on original training data (i.e., training data from Function-

SStuBs4J, denoted as Trainingori) on the testing data of

Function-SStuBs4Jpos , denoted as Testingpos . However, since

Function-SStuBs4Jpos and Function-SStuBs4J are not the

same split, Trainingori may contain the positive functions

in Testingpos . So, for a fair comparison, we identify the

intersection of Trainingori and Testingpos , and remove the

intersection from Testingpos and denote it as Testingpos fltr .

Finally, we adopt the widely used measure, Accuracy, to

evaluate their performances.

Results. The evaluation results are reported in Table VI and

the best results are highlighted in bold. The first column shows

the SOTA approaches, and the second column illustrates the

setting including the used data size as well as the indicator of

whether baseline approaches adopt the abstraction operation

1987

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Performance of all approaches on each category

Defect Category # Test # BERT # RoBERTa # CodeBERT # FastText # TextCNN # COMPDEFECT % FastText % COMPDEFECT

Same Function Change Caller 38 0 0 0 4 0 7 10.5% 18.4%

Changed Identifier Used 160 0 0 10 50 9 45 31.3% 28.1%

Change Modifier 33 1 1 3 9 0 14 27.3% 42.4%

Change Numeric Literal 99 8 10 21 38 5 38 38.4% 38.4%

Change Operand 16 0 0 0 0 0 3 0 18.8%

Change Binary Operator 53 2 2 6 12 3 10 22.6% 18.9%

Change Unary Operator 34 0 0 0 3 0 3 8.8% 8.8%

Wrong Function Name 301 81 81 121 142 103 160 47.2% 53.2%

Same Function Less Args 44 0 0 0 11 0 13 25.0% 29.5%

Same Function More Args 117 2 3 11 26 5 27 22.2% 23.1%

Same Function Swap Args 14 0 0 0 0 0 0 0 0

Change Boolean Literal 33 0 0 0 6 0 5 18.2% 15.2%

Less Specific If 49 0 0 0 4 0 4 8.2% 8.2%

More Specific If 57 0 0 1 7 0 11 12.3% 19.3%

Missing Throws Exception 1 0 0 0 0 0 1 0 100.0%

Delete Throws Exception 3 0 0 0 1 0 0 33.3% 0

Clean 1,054 1,051 1,044 1,008 902 1,040 837 85.6% 79.4%

All 2,106 1,145 1,141 1,181 1,215 1,165 1,178

or not. Following that, we list the performance of baselines

independently. Finally, the following four columns describe the

filtered testing size (i.e., remove the intersection of Trainingori
and Testingpos), and the compared performances between

baselines and COMPDEFECT.

According to the results, we find that on Testingpos: (1)

These approaches (i.e., Tufano et al, SequenceR, CODIT,

and Recoder) which adopt the abstraction operation perform

similarly in terms of accuracy (0.101-0.136). Meanwhile,

these approaches (i.e., Edits, CoCoNut, and Mashhadi et

al.) which do not adopt the abstraction operation perform

similarly (except Edits) with the accuracy performance of

0.225-0.230. (2) Generally, methods without abstraction have

a better performance than the ones with abstraction.

TABLE VI: Comparison between baselines and COMPDEFECT
on defect repair

Approaches
Setting Testingpos Testingpos fltr

Abs. # Train/Valid/Test Acc. # Size Acc. (BLs) Acc. (Ours)

Tufano et al.

	

7,042/880/881 0.132 194 0.139 0.247

SequenceR 7,474/934/934 0.136 179 0.193 0.240

CODIT 7,395/923/925 0.101 220 0.109 0.246

Recoder 5,801/726/724 0.104 157 0.115 0.231

Edits

8,406/1,050/1,052 0.066 1,052 0.066 0.231

CoCoNut 8,406/1,050/1,052 0.225 1,052 0.225 0.231

Mashhadi et al. 8,406/1,050/1,052 0.230 1,052 0.230 0.231

∗ Abs.: abstraction, Acc.: accuracy, BLs: Baselines.

Besides, on Testingpos fltr, we achieve the following obser-

vations: (1) Four methods with abstraction operation perform

similarly to the ones on Testingpos setting and achieve a better

accuracy performance of 0.109-0.193. (2) COMPDEFECT per-

forms best and improves Tufano et al., SequenceR, CODIT, and

Recoder by 77.7%, 24.4%, 125.7%, and 100.9%, respectively.

(3) COMPDEFECT also performs better than the three methods

without abstraction and improves them by 2.7%-250.0%.

(4) Methods including COMPDEFECT without abstraction
operation seem to perform better on the defect repair task.

(5) Compared with Mashhadi et al. which is a CodeBERT-

based method and fine-tuned on the same dataset used in this

paper, we find that COMPDEFECT and Mashhadi et al. have

comparable performance, which indicates the superiority of

the pre-trained model on the defect repair task.

Answer to RQ-3: COMPDEFECT can perform well in repair-
ing defects and pre-trained models have the advantage in the
defect repair task. Meanwhile, the abstraction operation may
negatively impact the performances of models when repairing
defects.

VI. DISCUSSION

A. The pipeline performance of COMPDEFECT

Currently, since there have no existing approaches that can

address three tasks (defect prediction, categorization, and repair)

simultaneously, we treat the three tasks separately and compare

COMPDEFECT with tens of state-of-the-art baselines on these

tasks, independently. However, the practice is that the three

tasks should be performed in a row. That is, the evaluation

of COMPDEFECT’s bug repair should be conducted on the

correctly classified results. Notice that, in our setting, the

predicting task and categorizing are intrinsically connected

since we classify whether a commit is defective by categorizing

whether one of the modified functions in the commit is a

non-clean one. We want to figure out the effectiveness of

COMPDEFECT in the pipeline setting (repairing defects on

correctly categorized functions) on the testing dataset.

Table VII shows the detailed experimental results. In

particular, the first two columns show defect types and their

corresponding numbers. The following two columns present the

number of correctly classified functions and correctly repaired,

independently. Then, the next two columns list the numbers of

correctly repaired functions after correctly classified as well as

their ratio. Finally, we present the overall performance when

functions are correctly classified and repaired.

According to the results, we obtain the following obser-

vations: (1) On average, about two-seventh (i.e., 0.285) of

buggy functions can be correctly repaired after being correctly

classified. (2) Defect repair is more difficult than defect

categorization and the number of correctly fixed functions

1988

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: The pipeline performance of COMPDEFECT

Defect Category # Test # Classification # Repair # Classification&Repair % Ratio % Overall

Same Function Change Caller 38 7/38 6/38 2/38 0.286 0.053

Changed Identifier Used 160 45/160 35/160 19/160 0.422 0.119
Change Modifier 33 14/33 9/33 9/33 0.643 0.273
Change Numeric Literal 99 38/99 18/99 11/99 0.289 0.111

Change Operand 16 3/16 2/16 0/16 0 0

Change Binary Operator 53 10/53 7/53 6/53 0.600 0.113
Change Unary Operator 34 3/34 3/34 1/34 0.333 0.029

Wrong Function Name 301 160/301 111/301 97/301 0.606 0.322
Same Function Less Args 44 13/44 5/44 3/44 0.231 0.068

Same Function More Args 117 27/117 24/117 14/117 0.519 0.120
Same Function Swap Args 14 0/14 1/14 0/14 0 0

Change Boolean Literal 33 5/33 7/33 1/33 0.200 0.030

Less Specific If 49 4/49 10/49 1/49 0.250 0.020

More Specific If 57 11/57 5/57 2/57 0.182 0.035

Missing Throws Exception 1 1/1 0/1 0/1 0 0

Delete Throws Exception 3 0/3 0/3 0/3 0 0

ALL 1,052 341/1,052 243/1,052 166/1,052 0.285 0.158

is less than the number of correctly classified functions in each

type of defect. (3) COMPDEFECT has a varying performance

in classifying and repairing different types of defects. In

particular, COMPDEFECT performs well on these types (i.e.,

“Change Modifier” (0.643), “Wrong Function Name” (0.606),

“Change Binary Operator” (0.600), “Same Function More Args”

(0.519), and “Changed Identifier Used” (0.422)), but performs

badly on four types (i.e., “Change Operand”, “Same Function

Swap Args”, “Missing Throws Exception” and “Delete Throws

Exception”). (4) Through a deeper analysis of the performance

difference, we find that:

• Data size has a heavy impact on performance. We find that

defect types with better performance have larger numbers of

training sizes than those with bad performance. For example,

“Wrong Function Name” has 2,410 training samples, while

“Change Operand”, “Missing Throws Exception”, and “Delete

Throws Exception” have 129, 8, and 26 training samples,

respectively.

• Function size (LOC) has an impact on performance. For

smaller size functions (e.g., <10), COMPDEFECT can capture

their semantic features well and repair them with varying

operations. For example, COMPDEFECT can repair “Change

Modifier” defect by appropriately adding or removing

modifiers to functions though it has a median size training

data (i.e., 263).

• Defect complexity has an impact on performance. As

for the complex types of defects, COMPDEFECT can’t

understand the complex types of defects well, which is also

hard for developers. For example, “Same Function Swap

Args” means fixing the defect by only swapping the order

of parameters with identical types. Therefore, if multiple

function parameters are of the same type, developers can

easily swap two of them without realizing if they do not

accurately remember what each argument represents.
Answer to Discussion 1: COMPDEFECT has a varying per-
formance in classifying and repairing different types of defects
and achieves an acceptable performance in the pipeline setting

(i.e., repairing defects after correctly classified). Besides, the
more training data the model has, the better performance the
COMPDEFECT achieves.

B. Ablation Study

We propose a unified model for predicting, categorizing, and

repairing defects by adopting the multi-task technology with the

combination of two separate technologies: GraphCodeBERT

and Decoder. Therefore, we conduct an ablation study to

investigate the effectiveness of the combination between

GraphCodeBERT and Decoder on these studied tasks. In

particular, we directly use GraphCodeBERT to address the

defect categorization task (function level) and defect prediction

tasks (commit level) and directly use a Decoder to address the

defect repair task (function level). The experimental settings

are the same as the ones in previous RQs.

The results are presented in Table VIII and the best

performances are highlighted in bold. According to the results,

we find that COMPDEFECT, a combination of GraphCodeBERT

and Decoder, can achieve better performance than the ones

obtained by a single approach on almost all tasks considering

several performance metrics (except precision on defect predic-

tion). In particular, COMPDEFECT improves GraphCodeBERT

by 1.3%-10.1% and 2.1%-49.1% on the defect prediction

task and defect categorization task, respectively. Meanwhile,

COMPDEFECT also improves Decoder by 20.3% on the

defect repair task. Therefore, combining GraphCodeBERT and

Decoder is superior to using them directly.

Answer to Discussion 2: GraphCodeBERT and Decoder can
achieve good performance on independent tasks, but combining
them appropriately with multiple-task learning techniques (e.g.,
COMPDEFECT) can obtain better performance.

C. Threats to Validation

Threats to Internal Validity mainly lie in the potential

faults in the implementation of our model. To minimize

such threats, we not only implement these methods by pair

1989

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: The ablation study of COMPDEFECT

Method Type
Commit-level (Binary Classification) Function-level (Multiple Classification)

Precision Recall F1-score AUC Precision Recall F1-score AUC ovo AUC ovr

COMPDEFECT 0.750 0.619 0.679 0.785 0.401 0.295 0.319 0.723 0.776
GraphCodeBERT 0.767 0.562 0.648 0.775 0.338 0.203 0.214 0.708 0.755

Method Type
Function-level (Repair)

Overall Prediction Category Repair
Accuracy

COMPDEFECT 0.231 COMPDEFECT vs. Single Task � � �
Decoder 0.192 Improvement 1.3%-10.1% 2.1%-49.1% 20.3%

programming but also make full use of the pre-trained models

such as GraphCodeBERT [11] and BERT [19]. Besides, we

directly use the original source code of baselines and the same

hyperparameters used in the original method are adopted in

our paper. All of the datasets used in our study are publicly

available from previous work [16], and we extend this dataset

for our investigated scenario.
Threats to External Validity mainly lie in the studied projects.

To reduce such threats, we opted to select high-popularity Java

projects. The popularity of a project is determined by computing

the sum of z-scores of forks and stars [16]. However, all studied

projects are open-source projects, it is still unknown whether

our COMPDEFECT can work well on commercial projects.
Threats to Construct Validity mainly lie in the adopted per-

formance metrics in our evaluations. To minimize such threats,

we adopt a few performance metrics widely used in existing

work. In particular, we totally consider five performance metrics

including Accuracy, Precision, Recall, F1-score, and AUC.

VII. RELATED WORK

A. Just-in-Time Defect Prediction
JIT defect prediction has been an active research topic in

recent years since it can identify defect-inducing commit at

a fine-grained level at check-in time [2], [6], [38], [45]–[52].

Kamei et al. [1] proposed 14 change-level metrics from five

dimensions to build an effort-aware prediction model. Jiang et

al. [13] proposed a personalized defect prediction by building

a separate prediction model for each developer. Following that,

Yang et al. [7], [53] subsequently proposed two approaches (i.e.,

Deeper and TLEL) for JIT defect prediction. Recently, a few

deep learning-based approaches [4], [8] have been proposed

for JIT defect prediction. Zeng et al. [54] revisited the deep

learning-based JIT defect prediction models and proposed a

simplistic model LApredict.
Different from the existing work (i.e., commit-level or file-

level JIT defect prediction), our model COMPDEFECT focus on

function-level single-statement JIT defect prediction, which is

a more fine-grained defect identification task. Besides, previous

work only gives two coarse-grained outputs: defect-inducing or

clean. COMPDEFECT can categorize the type of defect-inducing

functions.

B. Defect Repair
Defect repair [15] is also an active research topic and many

machine learning-based approaches are proposed to achieve

great progress [33], [34], [55]–[59]. However, the current state

of automated defect repair is limited to simple small fixes,

mostly one-line patches [17], [18]. Gupta et al. [60] proposed

a defect repair tool named DeepFix for fixing compiler errors.

Ahmed et al. [61] proposed a better approach, TRACER, for

compiler errors. Martin et al. [62] proposed DeepRepair to

leverage the learned code similarities to select repair ingredients

from code fragments that are similar to the buggy code. Wang

et al. [63] proposed a transformer-based deep learning method

named TEA for accurate and effective defect repair. Chen et

al. [64] proposed a unified and graph-based view of the program

learning approach named PLUR. Lutellier et al. [32] proposed

CoCoNut, which combines convolutional neural networks and

a new context-aware neural machine translation architecture.

Considering the complexity of defect repair, similar to previ-

ous work, COMPDEFECT also focuses on the one-line code fix

scenario. However, different from the existing work, the input

of COMPDEFECT is the source code of the changed function

in a commit and it aims to provide a foundation for connecting

defect identification and defect repair. COMPDEFECT can

categorize the type of defect and can fix it at check-in time.

VIII. CONCLUSION

We propose a unified defect prediction and repair framework

COMPDEFECT, which can identify whether a function changed

in a commit is defect-prone, categorize the type of defect,

and repair such a defect automatically. Generally, the first two

tasks in COMPDEFECT are treated as a multiclass classification

task, while the last one is treated as a sequence generation

task. The whole input of COMPDEFECT consists of three

versions (clean, buggy, and fixed) of a specific function.

Moreover, we build a new function-level dataset (Function-
SStuBs4J) on the basis of ManySStuBs4J to evaluate the

performance of COMPDEFECT. By comparing with state-of-

the-art baselines in various settings, COMPDEFECT can achieve

superior performance on classification and defect repair.

ACKNOWLEDGEMENTS

This research is supported by the National Natural Science

Foundation of China (No. 62202419), the Fundamental Re-

search Funds for the Central Universities (No. 226-2022-00064),

the Ningbo Natural Science Foundation (No. 2022J184), and

the State Street Zhejiang University Technology Center.

1990

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2013.

[2] J. Liu, Y. Zhou, Y. Yang, H. Lu, and B. Xu, “Code churn: A neglected
metric in effort-aware just-in-time defect prediction,” in Proceedings of
the 11th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE Press, 2017, pp. 11–19.

[3] C. Pornprasit and C. Tantithamthavorn, “Jitline: A simpler, better,
faster, finer-grained just-in-time defect prediction,” in Proceedings of the
International Conference on Mining Software Repositories (MSR), 2021,
p. To Appear.

[4] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 34–45.

[5] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted
technical debt in open source projects using text mining,” Empirical
Software Engineering, vol. 23, no. 1, pp. 418–451, 2018.

[6] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?: a
longitudinal case study of just-in-time defect prediction,” in Proceedings
of the 40th International Conference on Software Engineering, 2018, p.
560.

[7] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble learning
approach for just-in-time defect prediction,” Information and Software
Technology, vol. 87, pp. 206–220, 2017.

[8] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 518–529.

[9] “Git,” 2023. [Online]. Available: https://git-scm.com/
[10] S. Cao, X. Sun, L. Bo, R. Wu, B. Li, and C. Tao, “Mvd: Memory-related

vulnerability detection based on flow-sensitive graph neural networks,”
pp. 1456–1468, 2022.

[11] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-
training code representations with data flow,” 2021.

[12] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsupervised models:
A holistic look at effort-aware just-in-time defect prediction,” in 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2017, pp. 159–170.

[13] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Pro-
ceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 2013, pp. 279–289.

[14] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
2019.

[15] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1, pp.
34–67, 2017.

[16] R.-M. Karampatsis and C. Sutton, “How often do single-statement bugs
occur? the manysstubs4j dataset,” in Proceedings of the 17th International
Conference on Mining Software Repositories, 2020, pp. 573–577.

[17] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 1–11.

[18] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object-oriented program repair,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017,
pp. 648–659.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[20] “Activiti example,” 2023. [Online]. Available: https://github.com/Activiti/
Activiti/commit/c015d11303339f50254a10be7335fd33546911ab

[21] M. Crawshaw, “Multi-task learning with deep neural networks: A survey,”
arXiv preprint arXiv:2009.09796, 2020.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008.

[23] tree sitter, 2023. [Online]. Available: https://tree-sitter.github.io/tree-sitter/
[24] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and

A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,” arXiv
preprint arXiv:2303.07263, 2023.

[25] B. Lin, S. Wang, M. Wen, and X. Mao, “Context-aware code change
embedding for better patch correctness assessment,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 31, no. 3, pp.
1–29, 2022.

[26] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering -
ESEC/FSE 2018. New York, New York, USA: ACM Press, 2018,
pp. 908–911. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3236024.3264598

[27] W. Zhong, H. Ge, H. Ai, C. Li, K. Liu, J. Ge, and B. Luo, “Standup4npr:
Standardizing setup for empirically comparing neural program repair
systems,” in 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1–13.

[28] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[29] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association
for Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, Nov. 2020, pp. 1536–1547.

[30] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing. ACL, 2014, pp. 1746–1751.

[31] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou,
and T. Mikolov, “Fasttext.zip: Compressing text classification
models,” CoRR, vol. abs/1612.03651, 2016. [Online]. Available:
http://arxiv.org/abs/1612.03651

[32] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101–114.

[33] E. Mashhadi and H. Hemmati, “Applying codebert for automated program
repair of java simple bugs,” in 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE, 2021, pp.
505–509.

[34] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches in
the wild via neural machine translation,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 28, no. 4, pp. 1–29, 2019.

[35] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “Codit: Code
editing with tree-based neural models,” IEEE Transactions on Software
Engineering, 2020.

[36] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang,
“A syntax-guided edit decoder for neural program repair,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 341–353.

[37] Y. Ding, B. Ray, P. Devanbu, and V. J. Hellendoorn, “Patching as
translation: the data and the metaphor,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 275–286.

[38] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “Multi: Multi-objective effort-
aware just-in-time software defect prediction,” Information and Software
Technology, vol. 93, pp. 1–13, 2018.

[39] G. Zhipeng, X. Xin, L. David, G. John, and Z. Thomas, “Automating
the removal of obsolete todo comments,” in Proceedings of the 29th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 1–1.

[40] S. Pan, L. Bao, X. Ren, X. Xia, D. Lo, and S. Li, “Automating developer
chat mining,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2021, pp. 854–866.

[41] D. Arya, W. Wang, J. L. Guo, and J. Cheng, “Analysis and detection
of information types of open source software issue discussions,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 454–464.

1991

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

[42] A. Wood, P. Rodeghero, A. Armaly, and C. McMillan, “Detecting speech
act types in developer question/answer conversations during bug repair,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2018, pp. 491–502.

[43] Q. Huang, X. Xia, D. Lo, and G. C. Murphy, “Automating intention
mining,” IEEE Transactions on Software Engineering, vol. 46, no. 10,
pp. 1098–1119, 2018.

[44] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 691–
701.

[45] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[46] S. Young, T. Abdou, and A. Bener, “A replication study: just-in-time
defect prediction with ensemble learning,” in Proceedings of the 6th
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering, 2018, pp. 42–47.

[47] G. G. Cabral, L. L. Minku, E. Shihab, and S. Mujahid, “Class
imbalance evolution and verification latency in just-in-time software
defect prediction,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 666–676.

[48] M. Yan, X. Xia, Y. Fan, A. E. Hassan, D. Lo, and S. Li, “Just-in-time
defect identification and localization: A two-phase framework,” IEEE
Transactions on Software Engineering, 2020.

[49] C. Ni, W. Wang, K. Yang, X. Xia, K. Liu, and D. Lo, “ The Best of
Both Worlds: Integrating Semantic Features with Expert Features for
Defect Prediction and Localization,” in Proceedings of the 2022 30th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2022.

[50] C. Ni, X. Xia, D. Lo, X. Yang, and A. E. Hassan, “Just-in-time defect
prediction on javascript projects: A replication study,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 31, no. 4, pp.
1–38, 2022.

[51] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Perceptions,
expectations, and challenges in defect prediction,” IEEE Transactions
on Software Engineering, 2018.

[52] S. Tabassum, L. L. Minku, D. Feng, G. G. Cabral, and L. Song, “An
investigation of cross-project learning in online just-in-time software
defect prediction,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 2020, pp. 554–565.

[53] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for
just-in-time defect prediction,” in 2015 IEEE International Conference
on Software Quality, Reliability and Security. IEEE, 2015, pp. 17–26.

[54] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in ISSTA ’21: 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2021, pp. 1–1.

[55] H. Hata, E. Shihab, and G. Neubig, “Learning to generate cor-
rective patches using neural machine translation,” arXiv preprint
arXiv:1812.07170, 2018.

[56] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1161–1173.

[57] S. Chakraborty and B. Ray, “On multi-modal learning of editing source
code,” in 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2021, pp. 443–455.

[58] N. Bui, Y. Wang, and S. C. H. Hoi, “Detect-localize-repair:
A unified framework for learning to debug with codet5,” in
Findings of the Association for Computational Linguistics: EMNLP
2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022,
Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Association for
Computational Linguistics, 2022, pp. 812–823. [Online]. Available:
https://aclanthology.org/2022.findings-emnlp.57

[59] M. Allamanis, H. Jackson-Flux, and M. Brockschmidt, “Self-supervised
bug detection and repair,” Advances in Neural Information Processing
Systems, vol. 34, pp. 27 865–27 876, 2021.

[60] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[61] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani, “Compilation
error repair: for the student programs, from the student programs,”
in Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training, 2018, pp.
78–87.

[62] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” in 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019,
pp. 479–490.

[63] W. Wang, C. Wu, L. Cheng, and Y. Zhang, “Tea: Program repair using
neural network based on program information attention matrix,” arXiv
preprint arXiv:2107.08262, 2021.

[64] Z. Chen, V. J. Hellendoorn, P. Lamblin, P. Maniatis, P.-A. Manzagol,
D. Tarlow, and S. Moitra, “Plur: A unifying, graph-based view of program
learning, understanding, and repair,” Advances in Neural Information
Processing Systems, vol. 34, pp. 23 089–23 101, 2021.

1992

Authorized licensed use limited to: Zhejiang University. Downloaded on November 24,2023 at 07:52:27 UTC from IEEE Xplore. Restrictions apply.

